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a b s t r a c t

The availability of output from climate model ensembles, such as phases 3 and 5 of the Coupled Model
Intercomparison Project (CMIP3 and CMIP5), has greatly expanded information about future projections,
but there is no accepted blueprint for how this data should be utilized. The multi-model average is the
most commonly cited single estimate of future conditions, but higher-order moments representing the
variance and skewness of the distribution of projections provide important information about un-
certainty. We have analyzed a set of statistically downscaled climate model projections from the CMIP3
archive to assess extreme weather events at a level aimed to be appropriate for decision makers. Our
analysis uses the distribution of 13 global climate model projections to derive the inter-model standard
deviation, skewness, and percentile ranges for simulated changes in extreme heat, cold, and precipitation
by the mid-21st century, based on the A1B emissions scenario. These metrics provide information on
overall confidence across the entire range of projections (via the inter-model standard deviation), relative
confidence in upper-end versus lower-end changes (via skewness), and quantitative uncertainty bounds
(derived from bootstrapping).

Over our analysis domain, which covers the northeastern United States and southeastern Canada,
some primary findings include: (1) greater confidence in projections of less extreme cold than more
extreme heat and intense precipitation, (2) greater confidence in relatively conservative projections of
extreme heat, and (3) higher spatial variability in the confidence of projected increases in heavy pre-
cipitation. In addition, we describe how a simplified bootstrapping approach can assist decision makers
by estimating the probability of changes in extreme weather events based on user-defined percentile
thresholds.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Utilizing climate model projections can be challenging for both
climatologists and decision makers. Projections from a set of
models often exhibit considerable scatter and may even differ on
the sign of a future climate change, such as whether a location will
become wetter or drier. For many scenarios, there may be con-
sensus on the direction of change (e.g., a warming climate due to
greenhouse forcing), but the models may differ greatly on the
projected magnitude of the change. Improvements in the quality
of climate models have not rectified these discrepancies, as evi-
denced by the similar spread among projections between the
newer Coupled Model Intercomparison Project phase 5 (CMIP5)
and the older CMIP3 collection (Knutti and Sedláček, 2013). Dif-
ferences among the projected changes in extreme weather are of
particular relevance for decision makers, because of the

disproportionate socioeconomic impact these events exert.
The need to usefully interpret inconsistent model simulations

has spurred numerous assessment efforts aimed at quantifying
uncertainty in projections and increasing the reliability of pro-
jections. The simplest and most widely reported metric is the ar-
ithmetic average or multi-model mean among a set of model si-
mulations, which provides the most relevant single piece of gui-
dance on expected change. Information on uncertainty has often
been expressed in terms of basic metrics, such as the range of
projections among all models (Scherrer and Baettig, 2008) or the
inter-model standard deviation of a projection (Maloney et al.,
2013). Common alternative approaches are to identify where a
vast majority of models agree on the sign of a change (Meehl et al.,
2007) and somewhat more refined versions that depict a combi-
nation of high inter-model agreement within regions of significant
changes (Kirtman et al., 2013; Knutti and Sedláček, 2013). At the
other end of the complexity spectrum are highly advanced sta-
tistical approaches, such as Bayesian methods (Tebaldi et al.,
2005), hierarchical statistical models (Cressie and Wikle, 2011),
and Reliability Ensemble Averaging (Giorgi and Mearns, 2002).
These more sophisticated strategies are useful in their own right,
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but they are unlikely to be adopted by managers seeking practical
guidance on how to digest model information for the purpose of
decision making. Regardless of the method, uncertainty assess-
ments are useful for indicating how much confidence should be
placed in the inter-model average, but directly translating such
information for a particular application is not straightforward.

An alternative approach is to winnow a set of projections by
giving more credence to models considered to be the most accu-
rate and downgrading the others. This intuitively satisfying strat-
egy has been explored in a number of studies (e.g., Georgi and
Mearns, 2002; Murphy et al., 2004; Annan and Hargreaves, 2010)
and has been applied widely in an attempt to optimize various
projections (Schmittner et al., 2005; Chapman and Walsh, 2007;
Wang and Overland, 2012). Unfortunately, these efforts have been
hindered by the lack of a theoretical justification for weighting
model projections and by the practical difficulties in doing so
(Knutti, 2010), in part because there is no clear relationship be-
tween a model's skill in simulating past climate and the magni-
tude of its projected changes (Knutti et al., 2010). Furthermore,
deriving uncertainty information from a weighted model-mean
poses additional statistical challenges, and basing a weighting
scheme on smaller sample sizes constituting extreme events cre-
ates further difficulties.

In this study, we aim to strike a practical balance between
simple and complex methods of quantifying uncertainty in climate
projections for use by decision makers. Our focus is on extreme
weather events, because of their severe societal impacts and
overall positive trends (Gleason et al., 2008; Karl and Katz, 2012;
Walsh et al., 2014). We concentrate on short-term (daily) extremes
of heat, cold, and precipitation over the northeastern United States
and southeastern Canada, based on statistically downscaled pro-
jections. Although the methodology used here can be applied
generally, we focus on simulated climate change by the mid-21st
century, a time period of increasing relevance for practical deci-
sion-making. Our three primary statistical measures to character-
ize uncertainty in a set of model projections are considered to be
basic to intermediate in complexity: standard deviation (converted
to the coefficient of variation), skewness, and percentile ranges
derived from bootstrapping. The primary goal of this study is to
provide an assessment of projected changes in extreme weather
that is relevant for decision makers. We focus on statistical un-
certainty among model projections, each of which is deemed
equally plausible, rather than addressing the underlying causes of
model sensitivity that might explain why the projections differ
from each other.

2. Data and methods

We use a high-resolution (0.1°) data set of daily maximum
temperature, minimum temperature, and precipitation that was
statistically downscaled from 13 global climate model (GCM) si-
mulations included in CMIP3 (Table 1). We focus on the late-20th
century (1961–2000) and mid-21st century (2046–2065), based
on the “middle-of-the-road” A1B emissions scenario, along with a
supplemental analysis using the lower-emission B1 scenario. Our
downscaled projections are an improved and spatially expanded
version of a data set originally covering the state of Wisconsin,
which has been widely used for a variety of climate change studies
and assessments (WICCI, 2011; Notaro et al., 2011, 2012; Veloz
et al., 2012; Vavrus and Behnke, 2013). Details of the downscaling
procedure are given in Notaro et al. (2014), but an important
feature is that a particular large-scale atmospheric pattern does
not yield a unique temperature or precipitation value at the sur-
face. Instead, the downscaling is probabilistic by virtue of para-
meter values translated into a probability density function that

varies in time and space according to large-scale atmospheric
fields. In addition, the late-20th century model output was de-
biased, following the cumulative distribution function algorithm of
Wood et al. (2004). The same debiasing method was applied to the
original Wisconsin-based downscaled data, which was found to
produce an excellent match with observations of extreme daily
weather events (WICCI, 2011), unlike some downscaling methods
that rely on linear regression and analogs (Gutmann et al., 2014).
The statistical downscaling was trained on observations from the
National Weather Service's Cooperative Observer Program and
Environment Canada's Canadian Daily Climate Data.

In this study, we focus on a domain approximating that of the
Northeast Climate Science Center (NECSC) and associated Land-
scape Conservation Cooperatives (LCCs) that are part of the United
States Department of the Interior (Fig. 1). The NECSC is one
member of a federal network of eight regional centers created to
provide scientific information, tools, and techniques that managers
can use to anticipate, monitor, and adapt to climate change. The
use of this relatively small area in our study allows more in-depth
analysis of spatial variations and makes absolute temperature and
precipitation thresholds of extremes more meaningful. This do-
main encompasses several of the LCCs, the primary stakeholders
and partners of the Climate Science Centers, whose mission is to
connect scientific information with on-the-ground conservation

Table 1
List of CMIP3 GCMs used in this study, along with their original resolution before
downscaling was applied. Horizontal resolution is listed in degrees of latitude/
longitude, translated into approximate values for models that use spectral trun-
cation. Vertical resolution is expressed by the number of levels (L) used by the
model.

# Model Name Country Horizontal resolu-
tion (deg)

Vertical
resolution

1 CGCM3.1 (T47) Canada 3.75 L31
2 CGCM3.1 (T63) Canada 2.8 L31
3 CNRM_CM3 France 2.8 L45
4 CSIRO_mk3.0 Australia 2.8 L18
5 CSIRO_mk3.5 Australia 2.8 L18
6 GFDL_CM2.0 United States 2.5 L24
7 GISS_AOM United States 3.5 L12
8 IAP_FGOALS China 2.8 L26
9 MIROC3.2 (medres) Japan 3.5 L20

10 MIROC3.2 (hires) Japan 1.2 L56
11 ECHO_G Germany/

Korea
3.75 L19

12 MPI_ECHAM5 Germany 2.8 L31
13 MRI_CGCM2.3.2a Japan 3.5 L30

Fig. 1. Domain used in this study, encompassing the Northeast Climate Science
Center area (thick gray lines) and several Landscape Conservation Cooperatives
(numbered): (1) Appalachian, (4) Eastern Tallgrass Prairie and Big Rivers, (10) North
Atlantic, (13) Plains and Prairie Potholes, and (16) Upper Midwest and Great Lakes.
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