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a b s t r a c t

The present study investigated future temporal and spatial changes in maximum temperature, minimum
temperature, and precipitation in two sub-basins of the Jhelum River basin—the Two Peak Precipitation
basin (TPPB) and the One Peak Precipitation basin (OPPB)—and in the Jhelum River basin on the whole,
using the statistical downscaling model, SDSM. The Jhelum River is one of the biggest tributaries of the
Indus River basin and the main source of water for Mangla reservoir, the second biggest reservoir in
Pakistan.

An advanced interpolation method, kriging, was used to explore the spatial variations in the study
area. Validation results showed a better relationship between simulated and observed monthly time
series as well as between seasonal time series relative to daily time series, with an average R2 of 0.92–
0.97 for temperature and 0.22–0.62 for precipitation.

Mean annual temperature was projected to rise significantly in the entire basin under two emission
scenarios of HadCM3 (A2 and B2). However, these changes in mean annual temperature were predicted
to be higher in the TPPB than the OPPB. On the other hand, mean annual precipitation showed a distinct
increase in the TPPB and a decrease in the OPPB under both scenarios.

In the case of seasonal changes, spring in the TPPB and autumn in the OPPB were projected to be the
most affected seasons, with an average increase in temperature of 0.43–1.7 °C in both seasons relative to
baseline period. Summer in the TPPB and autumn in the OPPB were projected to receive more pre-
cipitation, with an average increase of 4–9% in both seasons, and winter in the TPPB and spring in the
OPPB were predicted to receive 2–11% less rainfall under both future scenarios, relative to the baseline
period.

In the case of spatial changes, some patches of the basin showed a decrease in temperature but most
areas of the basin showed an increase. During the 2020s (2011–2040), about half of the basin showed a
decrease in precipitation. However, in the 2080s (2071–2099), most parts of the basin were projected to
have decreased precipitation under both scenarios.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The concentration of CO2 and other greenhouse gases has been
increasing dramatically since 1950, mostly because of in-
dustrialization (Gebremeskel et al., 2005). This increase has caused
a global energy imbalance and has increased global warming. Ac-
cording to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change (IPCC), global (land and ocean) mean
surface temperature as calculated by a linear trend over the period
1880–2012, show a warming of 0.85 °C (0.65–1.06 °C). An alarming
increase of 0.78 (0.72–0.85) °C has been observed for the period of
2003–2012 with respect to 1850–1900. Global mean surface tem-
peratures is projected to increase by 0.3–1.7 °C, 1.1 to 2.6 °C, 1.4–
3.1 °C, and 2.6–4.8 °C under RCP2.6, RCP4.5, RCP6.0 and RCP8.5,
respectively, for 2081–2100 relative to 1986–2005 (IPCC, 2013).

This global warming can disturb the hydrological cycle of the
world, and can pose problems for public health, industrial and
municipal water demand, water energy exploitation, and the
ecosystem (Chu et al., 2010; Zhang et al., 2011).
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In the last few decades, Global Climate Models (GCMs)—the
most advanced and numerical-based coupled models representing
the global climate system—have been used to examine future
changes in climate variables such as temperature, precipitation,
and evaporation (Fowler et al., 2007). However, their outputs are
temporally and spatially very coarse (Gebremeskel et al., 2005),
which makes them useful only at continental and global levels.
Their application at local/regional levels, such as at the basin and
sub-basin scales, to assess the impacts of climate change on the
environment and hydrological cycle, is problematic due to a clear
resolution mismatch (Hay et al., 2000; Wilby et al., 2000). That is,
GCMs cannot give a realistic presentation of local or regional scales
due to parameterization limitations (Benestad et al., 2008). The
local and regional scales are defined as 0–50 km and 50�50 km2,
respectively (Xu, 1999)

To overcome this problem, during the last two decades, many
downscaling methods have been developed to make the large-
scale outputs of GCMs useful at local/regional scales (Wetterhall
et al., 2006). In the beginning, these methods were mostly im-
plemented in Europe and in the USA but are now applied
throughout the globe to examine changes in climate variables at
the basin level (Mahmood and Babel, 2012).

Generally, downscaling techniques are divided into two main
categories: Dynamical Downscaling (DD), and Statistical Down-
scaling (SD). In DD, a Regional Climate Model (RCM) of high re-
solution (5–50 km) (Chu et al., 2010), nested within a GCM, re-
ceives inputs from the GCM and then provides high resolution
outputs on a local scale. Since the RCM is dependent on the
boundary conditions of a GCM, there is a greater chance that
systematic errors that belong to the driving fields of the GCM will
be inherited by the RCM. In addition, simulations from RCMs are

computationally intensive, and depend upon the domain size and
resolution at which the RCMs are to run, which in turn limits the
number of climate projections (Fowler et al., 2007).

In contrast, SD approaches, which establish a bridge among the
large-scale variables (e.g., mean sea level pressure, temperature,
zonal wind, and geopotential height) and local-scale variables
(e.g., observed temperature and precipitation) by creating em-
pirical/statistical relationships, are computationally inexpensive
and much simpler than DD (Wetterhall et al., 2006). Moreover, SD
approaches offer immediate solutions for downscaling climate
variables and, accordingly, they have rapidly been adopted by a
wider community of scientists (Wilby et al., 2000; Fowler et al.,
2007). The limitation of SD is that historical meteorological station
data over a long period of time is required to establish a suitable
statistical or empirical relationship with large-scale variables (Chu
et al., 2010). This relationship is considered to be temporally sta-
tionary, which is the main assumption of this method (Hay and
Clark, 2003). In addition, SD is mainly dependent on the level of
uncertainties of the parent GCM(s). DD, therefore, is a good al-
ternative for SD in basins where no historical data is available
(Benestad et al., 2008).

To date, many SD models have been developed for down-
scaling, and among them Statistical Downscaling Model (SDSM)
was selected for this study. SDSM—a combination of multiple
linear regression and a stochastic weather generator—is a well-
known statistical model, and is frequently used for downscaling
important climate variables (e.g., temperature, precipitation, and
evaporation). The downscaled variables are used to assess hydro-
logical responses under changing climatic conditions (Diaz-Nieto
and Wilby, 2005; Gagnon et al., 2005; Gebremeskel et al., 2005;
Wilby et al., 2006). SDSM has been widely used throughout the

Fig. 1. Location map of the study area with the climate stations.
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