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a b s t r a c t

Projections of extreme precipitation are of great importance, considering the potential severe impacts on
society. In this study a recently developed regional, non-stationary peaks-over-threshold approach is
applied to two transient simulations of the RACMO2 regional climate model for the period 1950–2100,
driven by two different general circulation models. The regional approach reduces the estimation
uncertainty compared to at-site approaches. The selection of a threshold for the peaks-over-threshold
model is tackled from a new perspective, taking advantage of the regional setting. Further, a regional
quantile regression model using a common relative trend in the threshold is introduced. A considerable
bias in the extreme return levels is found with respect to gridded observations. This bias is corrected for
by adjusting the parameters in the peaks-over-threshold model.

In summer a significant increase in extreme precipitation over the study area is found for both
RACMO2 simulations, mainly as a result of an increase of the variability of the excesses over the threshold.
However, the magnitude of this trend in extreme summer precipitation depends on the driving general
circulation model. In winter an increase in extreme precipitation corresponding with an increase in mean
precipitation is found for both simulations. This trend is due to an increase of the threshold.

& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Information on extreme precipitation is crucial for various
societal sectors, e.g. for the design of sewage and drainage
systems, roads and tunnels, farming, and the insurance industry.
Consensus is growing that the characteristics of extreme precipi-
tation may alter owing to climate change. In order to project the
change in extreme precipitation, climate model data have been
analyzed and compared to observations. Often this evaluation is
done in terms of index values, such as the empirical annual 90%
quantile of the precipitation amounts for each year or the 1-day or
5-day maximum precipitation amount in a year, see e.g. Klein Tank
and Können (2003), and Turco and Llasat (2011). This approach
shows the evolution of precipitation extremes over time. However,
the indices have mostly a return period of not more than 1 year,

which is of minor importance for the planning of hydraulic
infrastructure, that usually has to withstand events with much
longer return periods. To estimate the changes in these rare
events, extreme-value distributions have been fitted to the
extremes for two subsets of the data representing current (e.g.
1980–2010) and future (e.g. 2070–2100) climate, assuming statio-
narity within the time slices, see e.g. Fowler et al. (2005), Ekström
et al. (2005), and Kyselý and Beranová (2009). Considering only
two time slices does not give a picture of the evolution of the
extremes, which is e.g. necessary if one is interested in the risk of
failure of a hydraulic structure during its expected lifetime. More-
over, the selection of the time slices introduces additional uncer-
tainty. A small shift of the time slices may have large influence on
the estimated change. As an alternative, extreme value distribu-
tions with time-dependent parameters, which allow the consid-
eration of the full time period, have been used, see e.g. Coles
(2001), El Adlouni et al. (2007), Sugahara et al. (2009), Kyselý et al.
(2010), Beguería et al. (2011), and Tramblay et al. (2013).

The estimation of changes in rare extremes is subject to large
uncertainty. A general way to reduce the estimation uncertainty is
regional frequency analysis (RFA), where the similarities between
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different sites in a region are exploited (Hosking and Wallis, 1997).
RFA is mostly applied to (annual) block maxima (BM). An alternative
to BM is to consider all peaks over a (high) threshold (POT), which is
often preferable, owing to the more efficient use of the data.

A regional peaks-over-threshold model, combining the RFA
approach and POT data, which can be used to analyze precipitation
extremes in a changing climate, was developed by Roth et al.
(2012). In this model a temporally varying threshold, which is
determined by quantile regression, is used to account for changes
in the frequency of precipitation extremes. The marginal distribu-
tions of the excesses are described by generalized Pareto distribu-
tions (GPD), with parameters, that may vary over time and their
spatial variation is modeled by the index flood (IF) approach. For a
detailed introduction to the index flood method, see Hosking and
Wallis (1997).

The selection of the threshold is a crucial step in the application
of the POT approach. However, there is still no standard procedure
for this, and usually one relies on visual tools. Among these the
plotting of the change of the estimated GPD shape parameter or the
mean excess of the exceedances against the height of the threshold
is popular. Unfortunately these plots rarely give clear indications of
which quantile should be used for the threshold. In the present
study, the individual plots are averaged over the region in order to
make the desired constant or linear structure more apparent.

Daily precipitation from two simulations of a regional climate
model (RCM) driven by different general circulation models (GCM)
and from gridded observational data is analyzed for the Netherlands
and north-western Germany. Instead of linking the POT model
parameters to time, a temperature-based covariate is used to include
the evolution of climate, see also Hanel et al. (2009), and Van
Oldenborgh et al. (2009). Bias correction of the return levels from
the regional climate model simulations is discussed. In addition to
the changes in return levels, we present a risk-based design level that
was recently introduced by Rootzén and Katz (2013).

Section 2 outlines the methods and Section 3 introduces the
data used. Results and discussion are given in Section 4, followed
by the conclusion in Section 5.

2. Methods

2.1. Introduction to the peaks-over-threshold model

To study the extremes of independent and identically distrib-
uted random variables Xi, one can consider the excesses Yi ¼ Xi�u
over a (high) threshold u. The Balkema, De Haan, and Pickands
theorem states that the distribution of the excesses Y, conditioned
on YZ0, can be approximated by a generalized Pareto distribution
(GPD), if the threshold u is sufficiently high and certain regularity
conditions hold, see e.g. Reiss and Thomas (2007):

PðYryjYZ0Þ ¼ Gξ;sðyÞ ¼
1� 1þξy

s
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s
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; ξ¼ 0;
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for yZ0 if ξZ0 and 0ryr�s=ξ if ξo0, where s and ξ are the
scale and the shape parameter respectively. For ξ¼ 0 the GPD
reduces to the exponential distribution. The independence
requirement can be weakened (e.g. Leadbetter et al., 1983).
In the case of short-range dependence the GPD approximation
applies if one considers declustered excesses, i.e. the excesses of
the local maxima (peaks) in a cluster of exceedances only. Several
studies have considered the GPD also for non-stationary data,
using temporally varying parameters, see for recent examples
Sugahara et al. (2009), Kyselý et al. (2010), and Beguería et al.
(2011).

2.2. Temporal dependence and declustering

Daily precipitation exhibits temporal dependence, also at high
levels. This dependence is generally stronger in winter than in
summer (due to the convective nature of most extremes in summer).
As mentioned in Section 2.1 one can account for this temporal
dependence by considering declustered excesses. This is usually
achieved by specifying a minimum separation time tsep between
exceedances over the threshold, where tsep is determined by the
temporal dependence in the data at high levels. Here, we follow this
approach but decluster all data and not the excesses only.

Let xs(t) be the rainfall at site sAf1;…; Sg and day tAf1;…; Tg.
To determine tsep we compute first the 95% quantile for each site s
and calculate the number of clusters of length nZ2. A cluster of
length n is defined as n consecutive exceedances of the 95%
quantile. The number of clusters decreases usually very fast with
the length n. The separation time tsep is set to n, if the number of
clusters of length nþ2 is sufficiently low. After this initial step we
obtain the declustered data by replacing xs(t) with zero, if it is not
a maximum in the subset xsðt�tsepÞ;…; xsðtÞ;…; xsðtþtsepÞ. From
this it is clear that also the excesses obtained from the declustered
data are separated by at least tsep days.

2.3. Index flood approach

Roth et al. (2012) introduced a regional approach for multi-site,
non-stationary POT rainfall data:

ysðtÞ ¼ xsðtÞ�usðtÞ;
where us(t) is a suitable threshold value for site s and day t. The
approach is based on the index flood (IF) assumption, i.e. that the
non-stationary POT data have, after scaling by a time and site
dependent index variable (or index rainfall) ηsðtÞ, a common excess
distribution. If the site-specific excess distributions are GPD with
shape parameter ξsðtÞ and scale parameter ssðtÞ, then we have for
the scaled excesses:

P
YsðtÞ
ηsðtÞ

ry YsðtÞ40
�
¼ GξðtÞ;γðtÞðyÞ;

����
�

ð1Þ

with Ys(t) the excess at site s and day t and γðtÞ ¼ ssðtÞ=ηsðtÞ a
dimensionless dispersion coefficient. The IF assumption thus
implies that this coefficient and the shape parameter are constant
over the region of interest. Roth et al. (2012) used the threshold
us(t) as index variable:

ηsðtÞ ¼ usðtÞ:
The mean number λ of the excesses over us(t) in this approach is
constant over time and space, which was achieved by using
quantile regression to determine us(t). With Eq. (1) we can
compute for each site s and day t the value rs;tðαÞ that is exceeded
on average α times in a season:

rs;tðαÞ ¼
usðtÞ 1�γðtÞ

ξðtÞ 1� λ

α

� �ξðtÞ" # !
; ξðtÞa0;

usðtÞð1þγðtÞlnðλ=αÞÞ; ξðtÞ ¼ 0:
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In analogy with a stationary setting, the quantity rs;tðαÞ is termed
the 1/α-year return level, although 1/α no longer gives the
expected waiting time between exceedances of rs;tðαÞ:

2.4. Determination of the threshold

The non-stationary threshold is estimated via quantile regres-
sion. However, we have to select an appropriate quantile, i.e. the
value of the threshold has to be high enough to justify the GPD
assumption.
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