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The distribution of the total transition strength, i.e. the right hand side of the integral form of Thomas–Reiche–
Kuhn sum rule, into individual absorption processes is described for crystalline silicon containing interstitial ox-
ygen. Utilization of the sumrule allows the construction of a dispersionmodel covering all elementary excitations
from phonon absorption to core electron excitations. The dependence of transition strength of individual
electronic and phonon contributions on temperature and oxygen content is described.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The classical theory of dispersion provides three general conditions
for the linear dielectric response that physically consistent models
must satisfy [1–4]: Kramers–Kronig relation, time reversal symmetry
and sum rule.While the first two conditions arewell known andwidely
used in construction of dispersionmodels, the sumrule is rarely utilized.
Classical f-sum rule is usually expressed for the imaginary part of dielec-
tric function εi as follows

Z ∞

0
εi ωð Þω dω ¼ π

2
ω2

p; ð1Þ

where ω is light frequency and ωp is a constant called the plasma fre-
quency. In the frame of classical physics plasma frequency is propor-
tional to density of electrons N e

ω2
p ¼ e2N e

ϵ0me
; ð2Þ

where e, ϵ0 and me are physical constants, i.e. electron charge, vacuum
permittivity and electron mass. It is clear that Eq. (1) together with
Eq. (2) form a bridge between dielectric response and structural param-
eters of the system such as atomic or mass density. One reason why the
sum rule is seldom used for construction of dispersion models is that it
is a global condition which can be applied correctly only to the entire

dielectric response covering all elementary excitations of the system.
However, thanks to the progress in instrumentation we are nowadays
able to measure dielectric response in broad spectral range from far
infrared (FIR) to vacuum ultraviolet (VUV) using commercial table top
instruments. Moreover, using synchrotron facilities it is possible to ex-
tend the spectral range to the X-ray region and cover the full range of
electronic excitations in solids. Therefore, modeling of the complete
dielectric response in the entire spectral region has become important.

Silicon wafers are widely used as substrates both in the microelec-
tronic industry and fundamental research of thin films. Although the
ideal substrates would be pure silicon single crystals, in practice silicon
wafers produced using Czochralski process [5] are mostly utilized. In
general, these wafers differ from ideal Si crystals by the presence of in-
terstitial oxygen (Oi) and concentration of dopants [6]. Moreover, the
concentrations of interstitial oxygen and dopants differ betweenwafers
and evenwithin onewafer. Therefore, it is not possible to use single tab-
ulated optical constants for all Si pieces, especially in the IR region, and
models describing the dielectric function of real silicon wafers must be
developed. It is also important that suchmodels should contain themin-
imum numbers of parameters necessary to express the variations
between individual silicon wafers. This means that models should be
parametrized by concentration of interstitial oxygen, oxygen precipi-
tates [7], substitutional carbon [8] and dopants such as boron, phospho-
rus or arsenic. In addition, since the optical measurements can be
carried out at different temperatures, the models should also include
temperature as a parameter.

In this work it will be shown how the sum rule can be utilized for
construction of dispersion model of c-Si wafers applicable in the entire
spectral region from FIR to VUV. This model will be temperature depen-
dent, nevertheless, it will only contain the influence of interstitial oxy-
gen which is perhaps the most important effect since interstitial
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oxygen is present in all Czochralski wafers [9]. The presented results
summarize ellipsometric and spectrophotometric characterizations of
a set of double side polished wafers and slabs produced using float
zone and Czochralski processes. Data sets from several instruments
were combined to cover a wide spectral range from 8.7 meV (70 cm−1)
to 8.7 eV and temperature range from 300 to 600 K. Experimental details
are out of scope of this paper and will be published elsewhere.

2. Theoretical background

Thomas–Reiche–Kuhn (TRK) sum rule for system of Ne electrons
can be written as [10]

Xf≠i

f

2
me

〈 fj jp̂xe i 〉j j2
E f−Ei

¼
Xf≠i

f

f if ¼ Ne; ð3Þ

where me and p̂xe denote electron mass and total momentum oper-
ator of electrons, respectively. The symbols |i 〉 and |f 〉 represent a
complete set of many-body eigenstates of the system with eigen-
values of energy Ei and Ef. The quantity fif is called oscillator
strength. It was shown that the discrete TRK sum rule (3) can be re-
written in an integral form [11]

Z ∞

0
F e Eð Þ dE ¼ Ne

V
¼ N e ; ð4Þ

where V is volume of the system and the transition strength func-
tion F e is defined as

F e Eð Þ ¼ 1
V

Xf≠i

f

f if δ E f−Ei−E
� �

þ δ Ei−E f−E
� �h i

: ð5Þ

The same TRK sum rule can be also written for nuclei

Z ∞

0
F n Eð Þ dE ¼ N n; ð6Þ

where n distinguishes the type of nuclei (n=Si or O for silicon contain-
ing interstitial oxygen) and N n are the corresponding nuclei densities.

Within dipole approximation the three quantum-mechanical transi-
tion strength functions F e, FSi and FO can be linearly combined to form
a new quantity F, also called (optical) transition strength function,
directly related to the dielectric function:

F Eð Þ ¼ M–1 F e Eð Þ þ
X
n

Z2
nme

mn
Fn Eð Þ

" #
≈ εi Eð ÞE; ð7Þ

whereM–1 = (eh)2/(8πϵ0me) is a combination of fundamental physical
constants and the symbols Zn and mn denote the proton number and
mass of nucleus n, respectively. The transition strength function F
satisfies the following sum rule which is a linear combination of the
TRK sum rules (4) and (6):

Z ∞

0
F Eð Þ dE ¼ M–1 N e þ

X
n

Z2
nme

mn
N n

 !
¼ N: ð8Þ

The quantity N on the right hand side is called total transition
strength of the system. Thus, the transition strength function is the
spectral distribution of the transition strength. Utilization of the
sum rule for construction of dispersion models consists in the distri-
bution of total transition strength among individual contributions of
elementary excitations [11–13].

The symbol≈ in formula (7) is used to emphasize that the quantum
mechanical quantity F(E) and macroscopic quantity εi representing di-
electric response are connected by the dipole approximation. Within

classical physics this distinction disappears and the description using
transition strength function is equivalent to other representations of lin-
ear dielectric response:

F Eð Þ ¼ Eεi Eð Þ ¼ ℏ
ϵ0

σ r Eð Þ ; ð9Þ

where σr is the real part of conductivity. The linear dielectric response is
then given as the sum of damped harmonic oscillators (DHOs):

F Eð Þ ¼ 4
π

X
j

N jB jE
2

E2c; j−E2
� �2 þ 4B2

j E
2
;
X
j

N j ¼ N; ð10Þ

where Nj, Ec,j and Bj are the transition strength, central energy and
broadening of DHO, respectively. The quantity Nj has unit eV2 and is
also often called oscillator strength even though it differs from unitless
quantity fif occurring in Eq. (3). In formula (10) the terms satisfying in-
equality Ec,j N Bj can be rewritten by the Lorentz functions:

F j Eð Þ ¼ N jBjE
πE j

1

E j−E
� �2 þ B2

j

− 1

E j þ E
� �2 þ B2

j

0
B@

1
CA; ð11Þ

where Ej is the energy of transition related to the central energy of DHO
by relation Ec,j

2 = Ej
2 + Bj

2.
Note that classical systems with parameters Ec,j b Bj (overdamped

oscillators) or Ec,j = 0 (Drude formula) are impossible to describe
using Eq. (11) as Lorentzian broadened discrete spectrum. Formula (11)
is equivalent to quantummechanical description represented by Eq. (5)
for limit Bj→ 0. On the other hand, quantummechanical systems exhib-
it behavior that cannot be described using a finite number of DHOs, for
instance bandgap. Moreover, Gaussian broadening is usually more ap-
propriate for quantum systems [14].

The approach based on the transition strength function takes advan-
tage of a clear connection between dielectric response and microscopic
quantities as oscillator strengths or momentummatrix elements. IfNj is
the transition strength of an individual transition i→ j corresponding to
absorbed energy Ej = Ef − Ei then it holds:

Nj ¼
M–1

V
f if ¼

ehð Þ2
8πϵ0meV

f if ¼
ehð Þ2

4πϵ0m
2
eVE j

j 〈 f jp̂xeji 〉 j2: ð12Þ

The constant M represents a link between optical quantities,
i.e. transition strength, and density of the system. For example, if Nex

is the transition strength of an excitonic peak then the relation

Nex ¼ M–1

V

X
f

f if ¼ M–1N ex ð13Þ

gives the ‘volume density of excitons’N ex (the summation is performed
over f states representing all the excitonic excitations). However, it is
not clear how is such quantity related to the density of real particles
(electrons, nuclei). Since all elementary excitations in solids involve
quasiparticles the only formula with a clear interpretation is Eq. (8)
for total transition strength N. For a more detailed discussion see [11].

3. Absorption processes in c-Si wafers

The absorption in c-Si wafers is caused by the following effects cor-
responding to the individual contributions to the transition strength
function:

dt Direct interband transitions from valence to conduction
band.

idt Indirect interband transitions from valence to conduction
band.
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