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Different types of broadening of the dielectric response are studiedwith respect to the preservation of the Thomas–
Reiche–Kuhn sum rule. It is found that only the broadening of the dielectric function and transition strength function
conserve this sum rule, whereas the broadening of the transition probability function (joint density of states)
increases or decreases the sum. The effect of different kinds of broadening is demonstrated for interband and
intraband direct electronic transitions using simplified rectangular models. It is shown that the broadening of the
dielectric function is more suitable for interband transitions while broadening of the transition strength function
is more suitable for intraband transitions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The dielectric response can be equivalently described by various
functions of photon energy E, such as the imaginary part of the dielectric
function εi, the transition probability function J and the transition
strength function F:

εi≈
J
E2

¼ F
E
; ð1Þ

where symbol≈ represents the dipole approximation [1]. The function
F is defined as a continuous condensed-matter equivalent of the oscilla-
tor strength known for discrete transitions in atomic spectra [1]. It was
shown that this function satisfies the integral form of Thomas–Reiche–
Kuhn sum rule [2,1]:Z ∞

0
F Eð ÞdE ¼ N; ð2Þ

where the constantN is called the total transition strength. Note that J in
(1) is proportional to the transition density J [1] or the joint density of
states Jvc [3,4] if the transition probability is constant but it is not equiv-
alent in general. In the frame of the dipole approximation the real part of
conductivity is related to the transition strength function according to

σ r≈
ϵ0
ℏ

F; ð3Þ

where ϵ0 is the vacuum permittivity and ℏ is the reduced Planck
constant. The functions F or J can be used to construct dispersionmodels
fulfilling the sum rule (2) [1,5,6]. In the case of crystalline materials,

direct interband transitions and two-phonon absorption are modeled
using a piecewise function exhibiting sharp features, i.e. Van Hove
singularities [1,7].

In reality, more complex phenomena, such as electron–phonon
interaction and isotopic effects, cause broadening of the dielectric
response that have to be taken into account in the dispersion models.
The broadening is introduced phenomenologically as the convolution
with a normalized broadening function. The broadening function usually
has the form of a Lorentzian or Gaussian [3,4,8–14] and its selection
depends on the broadening phenomena [4]. The most applicable, from
our experiences, is the Gaussian broadening function. The Lorentzian
broadening or an approximation of Gaussian broadening is often chosen
to avoid computational difficulties.

The convolution is applied to different quantities, usually J or εi. Kim
et al. showed that the broadening of εi is preferable because it does not
lead to spurious static conductivity in the broadened dielectric response
[4].

The broadening needs to be judged also from the sum rule preserva-
tion point of view. This work discusses the broadening of εi and σr that
correspond to the Fermi golden rule and the Kubo formula, respectively.
These two approaches represent the two starting points for the expres-
sion of the dielectric response for quantum systems. It will be shown
that the broadening of εi is more suitable for interband transitions
while the broadening of F or σr is better for intraband transitions.

2. Dielectric response

This sectionwill summarize the approaches to the construction of the
electronic part of the dielectric response. The incorporation of the
nucleonic part of the dielectric response is described in [1]. Within the
dipole approximation, the dielectric function can be obtained using
different approaches leading to the same unbroadened εi. One possibility
is to start from the Fermi golden rule that expresses the transition
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probability for transitions from an initial ground state |i 〉 to s final
state | f〉 of a closed system [15]:

εi ¼
π
ϵ0V

Xf≠i

f

j 〈 f jd̂xeji 〉 j2 δ E f−Ei−E
� �

−δ Ei−E f−E
� �h i

; ð4Þ

whereV is the volume of the system, Ei and Ef are the energies of the ini-
tial and final states, respectively. The symbol d̂xe denotes the total dipole
operator of electrons along the external electric field and can be
expressed as follows [15]:

j 〈 f jd̂xeji 〉 j2 ¼ e2j 〈 f jx̂eji 〉 j2 ¼ eℏ
me

� �2j 〈 f jp̂xeji 〉 j2

E f−Ei
� �2 ; ð5Þ

where me and e denote the electron mass and the elementary charge,
respectively. Operators p̂xe and x̂e are the total momentum and position
operators of electrons. Therefore, the dielectric function can bewritten as

εi ¼
ehð Þ2

4πϵ0m
2
eV

Xf≠i

f

j 〈 f jp̂xeji 〉 j2

E f−Ei
� �2 δ E f−Ei−E

� �
−δ Ei−E f−E
� �h i

: ð6Þ

The relation εi = J/E2 is obtained if the transition probability func-
tion J is introduced as

J ¼ ehð Þ2
4πϵ0m

2
eV

Xf≠i

f

〈 f jp̂xeji 〉 j2
h
δ E f−Ei−E
� �

−δ Ei−E f−E
� �i��� ð7Þ

and the properties of the δ-function

δ E f−Ei � E
� �

Ei−E f

� �2 ¼
δ E f−Ei � E
� �

E2
ð8Þ

are utilized.
Another possible starting point is the Kubo formula derived for

an open non-interacting system [16,17]. It expresses the real part of
conductivity σr as

σ r ¼
πℏ
V

Xf≠i

i; f

exp
Ω−Ei
kBT

� �j 〈 f ĵ jxeji 〉 j2
E f−Ei

h
δ E f−Ei−E
� �

þ δ Ei−E f−E
� �i

ð9Þ

using the electric current operator ĵxe. Itsmatrix element is related to the
momentummatrix element as follows:

j 〈 f ĵ jxeji 〉 j2 ¼ e2

m2
e
j 〈 f jp̂xeji 〉 j2: ð10Þ

The symbols kB and T denote the Boltzmann constant and tempera-
ture, respectively, and Ω is the thermodynamic potential satisfying

X
i

exp
Ω−Ei
kBT

� �
¼ 1: ð11Þ

The summation over initial states can be avoided for low tempera-
tures, when only the ground state is considered. Then, the expression
for the transition strength function is obtained from Eqs. (3) and (9) [1]:

F ¼ ehð Þ2
4πϵ0m

2
eV

Xf≠i

f

j 〈 f jp̂xeji 〉 j2
E f−Ei

δ E f−Ei−E
� �

þ δ Ei−E f−E
� �h i

: ð12Þ

All three expressions (6), (7) and (12) are equivalent and related by
Eq. (1).

3. Broadening

Broadening of the dielectric response is introduced phenomenolog-
ically by replacing the δ-functions in the formulas (6), (7) and (12)
above with a normalized broadening functions β, e.g. the Gaussian

δ xð Þ→β xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
B
exp − x2

2B2

 !
: ð13Þ

Here B N 0 denotes the broadening parameter. However, the previ-
ously equivalent formulas become non-equivalent after this transfor-
mation. Depending on how the inverse square of energy in the
formulas is split between the powers of (Ef − Ei) and E, different types
of broadening are obtained:

eεi Eð Þ ¼ 1
E2

Z ∞

−∞
β E−tð Þ J tð Þdt J−broadening;

eεi Eð Þ ¼ 1
E

Z ∞

−∞
β E−tð Þ J tð Þ

t
dt F−broadening;

eεi Eð Þ ¼
Z ∞

−∞
β E−tð Þ J tð Þ

E2
dt ε−broadening;

ð14Þ

where eεi denotes broadened εi. The different broadening types can be
written more succinctly if we denote convolution by * and understand
that the independent variable is energy E:

eεi ¼ 1
E2

β � Jð Þ J−broadening;

eεi ¼ 1
E

β � J
E

� �
¼ 1

E
β � Fð Þ F−broadening;

eεi ¼ β � J
E2

¼ β � εi ε−broadening:

ð15Þ

Note that the symmetries of J, F and ε imply thatβmust be an even func-
tion so that the broadening preserves the symmetries.

4. Sum rule conservation

In order to study the conservation of the sum rule by different types
of applied broadening, it is advantageous to expand F in the following
form

F Eð Þ ¼ Em

2

Z ∞

−∞
δ E−tð Þ þ −1ð Þmδ E þ tð Þ� 	

F tð Þt−mdt; ð16Þ

where m is an integer. This identity clearly holds because F is an even
function. The factor (−1)m in the integrand follows from the identity

Emδ E � tÞ ¼ ∓tð Þmδ E � tÞ:ð
 ð17Þ

When δ in Eq. (16) is replaced with β, different values of the power
m lead to different types of broadening introduced above. The broad-
ened transition strength corresponding to the m-th power, denotedeFm, can therefore be written as

eFm Eð Þ ¼ Em

2

Z ∞

−∞
β E−tð Þ þ −1ð Þmβ E þ tð Þ� 	

F tð Þt−mdt; ð18Þ

wherem = −1, 0, and 1 correspond to J-, F- and ε-broadening, respec-
tively. The sum rule is conserved by the broadening if

1
2

Z ∞

−∞
eFm Eð ÞdE ¼ 1

2

Z ∞

−∞
F Eð ÞdE ¼ N: ð19Þ
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