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Ellipsometric porosimetry is a valuable tool to determine gas loading of porousmaterials. Usually the Lorentz–
Lorenz effective medium theory is used, instead of the more accurate Bruggeman theory. In contrast to
Lorentz–Lorenz, the Bruggeman model requires detailed knowledge on the constituents of the porous
material. A first order perturbation of both effective medium approximations is used to analyze the difference
between these models. Similar results are only found for materials with 70% porosity. Below 50% porosity, the
gas load is underestimated with the Lorentz–Lorenz model. For porous silica and alumina with 50% porosity,
the use of Lorentz–Lorenz leads to a systematic error of 18% of the load capacity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In ellipsometric porosimetry the loading of a porous host material
with a guest material (a gas or liquid) is studied, for example the CO2

sorption of a silica membrane [1]. In this technique the change of the
dielectric function upon loading is measured. From this change, the
amount of guestmolecules in thehostmaterial or thematerial's porosity
can be calculated. To do these calculations, the effect of the relative
presence of the host and guest material dielectric function has to be
evaluated from an effective medium approximation (EMA).

Usually a Lorentz–Lorenz (also referred to as Clausius–Mossotti)
approach is used, instead of a generally more accurate Bruggeman
approach [2–4]. The reason for this lies in the often unknown dielectric
properties of the constituents of the porous material. For example,
porous silica can often not be represented as a mixture of silicon oxide
and voids due to the presence of many hydrogen bonds. The SiOH
material leads to a higher dielectric function than quartz [1].

If the guest material has a small dielectric constant, which is usually
the case for a dilute gas, the loading of the host material will result in a
small change in the total dielectric function. This means that it's
expected to be possible to describe the change by a first order
perturbation. This linearization is done for both effective medium
theories in this article and the result is compared. A significant deviation
between the two is found for low porous materials.

2. Effective medium approaches

2.1. Lorentz–Lorenz

The Lorentz–Lorenz equation is derived from the Clausius–
Mossotti relation, which relates the dielectric constant of spherical

particles with their densityN and their polarizability α [8,9]. In SI units
it is:

〈ε〉−1
〈ε〉 + 2

=
Nα
3ε0

ð1Þ

For a mixture of several materials with polarizability αi and density
Ni, the contributions of the individual components are counted up to
give the effective dielectric function 〈ε〉 of the mixture. This approach
was originally derived by Lorentz and Lorenz to describe the optical
properties of a gas, a case in which the single molecules are well
separated, and do not interact.
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∑
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A linearization for a dilute gas (εg≈1) simplifies the expression to
[8]:

εg = 1 +
Ngαg

ε0
ð3Þ

For a porous material with dielectric function εm and porosity f, the
Lorentz–Lorenz is often used to describe the change in dielectric
constant through the insertion of a gas with polarizability αg into the
pores. The gas is assumed to fill all pore volume homogeneously, and its
densityNg is increased upon loading. Eq. (2) can be adapted for the two
components, the solid material, and the added gas to give the Lorentz–
Lorenz equation [5–7]:

〈ε〉−1
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= 1−fð Þ εm−1
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+ f
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ð4Þ
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Since the density in this system can be much higher than for a gas,
the assumption of well separated and non-interacting molecules is
not fulfilled in this approach, stretching the validity of the equation.

Eq. (4) can be rearranged to give the total dielectric function 〈ε〉:

〈ε〉 =
2f εg + εgεm−2f εm + 2εm

εg + f εm−εg
� �

+ 2
ð5Þ

2.2. Bruggeman effective medium approximation

Bruggeman calculated in his famous article [2] the dielectric
constants for mixed media of different dimensionality and topology.
Usually his result for media made up of spheres of two materials is
called the Bruggeman approach and is probably the most common
EMA used in ellipsometry. By integrating the Rayleigh mixing formula
for two components Bruggeman calculated the expression for the
dielectric constant 〈ε〉.

Adapted for the case of a host material with spherical pores which
are filled with guest molecules of density Ng, the effective dielectric
constant 〈ε〉 is given by:

0 = 1−fð Þ εm−〈ε〉
εm + 2〈ε〉

+ f
εg−〈ε〉

εg + 2〈ε〉
ð6Þ

Fig. 1 shows the solutions for a material with dielectric constant
εm=2.1 and different porosities as a function of guest permittivity εg
for the Lorentz-Lorenz and Bruggeman equation. Especially for guests
with a small εg, i.e. a very dilute gas, and a porosity of 10% to 60% both
approaches differ. This signifies that the choice between Lorentz–
Lorenz and Bruggeman in ellipsometric porosimetry is in this region
significant for the obtained result. Because the Bruggeman approach is
regarded to be the more accurate one, the use of the Lorentz–Lorenz
approach leads to a systematic error.

3. Linearization of the EMA

If the dielectric constant of the guest material is small, the loading
is expected to result in a small change of the dielectric constant. This
guest material could be for example a dilute gas. To estimate the
change of the dielectric constant it is therefore sufficient to describe it
by a first order perturbation. According to Eq. (3) the change is
expected to depend on the polarizabilityαg and the guest densityNg. If
the dielectric constant of the empty host material is 〈ε〉0, the change

upon gas loading is expressed by a term δε:

〈ε〉 = 〈ε〉0 + δε = 〈ε〉0 + C
fNgαg

ε0
ð7Þ

Where the product fNg is the guest molecule density inside the
pores. The linearization coefficient C depends on the effectivemedium
approach employed. For the Bruggeman and Lorentz–Lorenz ap-
proach the coefficients CB and CL are respectively (see Appendix for
derivation):

CB =
1
f

3f−1ð Þ〈ε〉0 + εm
2〈ε〉0 + εm

〈ε〉

ð8Þ

CL =
〈ε〉0 + 2ð Þ2

9
ð9Þ

Note that for the Bruggeman approach both the porosity f and the
host material dielectric constant εm are needed, quantities which are
usually not known. On the other hand for the Lorentz–Lorenz
approach, only the effective dielectric function of the empty, porous
material is needed, which can be easily measured.

3.1. Validity of the linearizations

To test the validity of the linearizations, they were compared with
the exact results for the parameters of a porous silica material (εm=2,
f=0.5) loaded with a dilute gas (εg=1.001), a dense gas (εg=1.1)
and a liquid (εg=1.8).

The effective dielectric function is calculated as a function of the
relative concentration Ng/Nfull, which corresponds to an increasing
guest density inside the pores.

Fig. 2 shows the comparison between the exact solution for the
Lorentz-Lorenz approach and its linearization calculated with Eq. (9).
While the linearization provides a good representation for the
insertion of a dilute gas, the insertion of a denser gas or even of a
liquid results in a substantial deviation between the linearized and the
exact evaluation.

In Fig. 3 the exact and linearized results for the Bruggeman
approach are presented, using the same parameters as in Fig. 2. The
results show that the linearization gives a very good representation of
the exact solution. Even for a very dense guest material (εg=1.8) the
linearization is still acceptable up to 50% relative concentration.
Therefore, the loading of a porous material can be well described by
the linearized version of Bruggeman's equation.
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Fig. 1. Solution for the effective dielectric constant ε as a function of εg and for porosity f
from 0 to 1 (line separation 0.1) for the Lorentz-Lorenz (dash) and Bruggeman (solid)
equation. The host material has εm=2.1.
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Fig. 2. Comparison of the exact and linearized solution for the Lorentz-Lorenz approach.
Three different guest materials with εg=1.8 (liquid), 1.1 and 1.001 (gas) are used.
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