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a b s t r a c t

Feature extraction from Atom Probe Tomography (APT) data is usually performed by repeatedly deli-
neating iso-concentration surfaces of a chemical component of the sample material at different values of
concentration threshold, until the user visually determines a satisfactory result in line with prior
knowledge. However, this approach allows for important features, buried within the sample, to be vi-
sually obscured by the high density and volume (�107 atoms) of APT data. This work provides a data
driven methodology to objectively determine the appropriate concentration threshold for classifying
different phases, such as precipitates, by mapping the topology of the APT data set using a concept from
algebraic topology termed persistent simplicial homology. A case study of Sc precipitates in an Al–Mg–Sc
alloy is presented demonstrating the power of this technique to capture features, such as precise de-
marcation of Sc clusters and Al segregation at the cluster boundaries, not easily available by routine
visual adjustment.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Atom Probe Tomography (APT) presents [1–5] enormous po-
tential in probing the sub-nanometer character of materials.
However, recovering this information from data generated at such
high spatial resolution naturally presents the concomitant chal-
lenge of interpreting very high volume and high density data [6,7].
Even small data collections involve �107 atoms and the standard
procedure of visualizing this data set to isolate features can allow
important ones, such as precipitates, to be easily lost within the
high volume of data. Feature extraction typically requires drawing
iso-concentration surfaces [8,9] at a particular concentration
threshold, then visually exploring the data space to probe for
various features, and repeating the procedure over an entire range
of concentration threshold values. Following up on our earlier
work in rendering such high volume APT data to aid in feature
extraction [10–12] we now provide an alternate data driven ap-
proach of objectively classifying different phases such as pre-
cipitates by mapping the topology of the APT data set using con-
cepts from algebraic topology, namely, simplicial homology [13–
15].

Topology is inherently a classification system that deals with
qualitative geometric information. This includes the study of what
the connected components of a space are and their connectivity

information in different dimensions of space [16]. Metric proper-
ties such as the position of a point, the distance between points, or
the curvature of a surface, are irrelevant to topology. Thus, a circle
and a square have the same topology although they are geome-
trically different. Such topological invariants can be represented by
simplicial complexes, which are combinatorial objects that can
represent spaces and separate the topology of a space from its
geometry [14]. Examples of simplices include a point (0-dimen-
sional simplex), a line segment (1-dimensional simplex), a triangle
(2-dimensional simplex) and a tetrahedron (3-dimensional
simplex).

Simplicial homology is a process that provides information
about the simplicial complex by the number of cycles (a type of
hole) it contains. One of its informational outcomes are Betti
numbers which record the topological invariants of an object, in-
variants such as the number of connected components, holes,
tunnels, or cavities [17]. While a structure can have infinite shapes,
many of which cannot be quantified, it can have only limited to-
pological features depending on its dimension. For example, in
three dimensions (3D), a structure can be simply connected, or it
can be connected such that a tunnel passes through it, or it can be
connected to itself such that it encloses a cavity, or it can remain
unconnected. Thus, we can characterize the topology of a structure
by counting the number of simply connected components, number
of tunnels and number of cavities denoted by Betti numbers β0, β1
and β2.
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2. Methods

When dealing with point cloud data representing physical
structures, such as the APT data, the number and type of topolo-
gical invariants clearly depends on the degree of connectivity
between the various points, established through some metric such
as distance. The determination of which points to connect can be
addressed by defining a sphere of radius ‘ɛ’ around each point and
connecting it to all those other points that lie within this sphere.
Again there could be a measure of arbitrariness in determining the
appropriate value of ɛ. A small change in ɛ for randomly dis-
tributed points can quickly change the underlying topology due to
statistical noise, thus changing the Betti numbers of the structure.
The challenge is to determine the appropriate value of ɛ that
corresponds to a meaningful feature. A powerful technique to
overcome this problem is persistent homology [18], so termed
because it is based on the idea that betti numbers relating to
random distribution of data points and noise cannot persist as we
vary ɛ. The value of ɛ is gradually increased from 0 and the num-
bers of different topological components that appear and dis-
appear are tracked for changing ɛ. This process is called filtration.
Only those topological invariants that represent true features in
the underlying data will remain unaffected by small changes in ɛ.

An example of the evolution of Betti numbers with changing ɛ
is shown with 2-D data in Fig. 1. The data points are obtained by
sampling 5 points each, at regular intervals, from 3 parallel lines.
At ɛ¼0, there are 15 vertices or 0-simplices forming 15 in-
dependent components with β0 ¼15. As the distance threshold for
connectivity to adjacent points is increased the vertices connect to
their first nearest neighbors resulting in 3 connected components,
representing the 3 parallel lines or β0¼3. As ɛ is increased further,
each point now connects to its second nearest neighbor thus
forming 8 squares, each square representing a hole. The whole
structure is a single connected component, thus β0¼1 and β1¼8.
Finally for further increase in ɛ each vertex now connects to its
third nearest neighbor forming triangles, thus, closing the 8 holes.
Therefore, β0¼1 and β1¼0.

The persistence of different topological features can be re-
corded as barcodes [Fig. 2] grouped according to each Betti

number. The horizontal axis represents the parameter ɛ or the
range of connectivity around points in the point cloud, while the
vertical axis captures the number of topological components
present in the point cloud at each interval of ɛ for β0 [Fig. 2(a)] and
β1 [Fig. 2(b)]. Initially there are 15 vertices or independent com-
ponents with β0¼15 at ɛ¼0. As the distance threshold is increased
the vertices connect to their first nearest neighbors forming
3 parallel lines at ɛ¼0.5 resulting in the 15 bars on the barcode
plot collapsing into 3 or β0¼3. If the 3 lines were sufficiently far
apart, then the value of β0¼3 would have persisted for a long
duration. However, since the separation between adjacent points
is comparable to the separation between points on each line, at
ɛ¼1 the points on different lines are interconnected and the
whole structure is a single connected component, thus, β0¼1
thereafter for ɛ-1. It should be noted that eventually for ɛ-1,
the resultant structure will always have β0¼1 since every vertex
will eventually connect to every other one. There has to be some
knowledge of the appropriate range for ɛ, such as the interatomic
distance when dealing with raw atom probe data, or voxel length
if the data has been voxelized. For β1, at ɛ¼1 there are 8 squares,
each square representing a hole. Thus, β1¼8. However, as soon as
each vertex connected to its third nearest neighbor, forming tri-
angles, the holes are closed again leading to β1¼0. The persistence
of features is a measure of whether these features are actually
present in the data or if they are artifacts appearing at certain
intervals. The 8 holes on the β1 appear for a very short duration
and immediately close up.

For the 3D APT data, the sheer number of data points can po-
tentially make the Betti number computation intractable. To
overcome this we employ the witness complex [19] construction,
which allows us to build a simplicial complex using landmark
points sampled from a point cloud data set, carefully chosen to
represent the original data. This is demonstrated in Fig. 3 for
points sampled from a sphere. The original sampling [Fig. 3(a)]
contains about 2000 points and by downsampling [Fig. 3(b)] we
can choose about 200 points, which are appropriately spaced.

The points are chosen to be random or evenly spaced. The
advantage of even spacing is that it minimizes the probability of
statistical noise while on the other hand it necessarily includes

Fig. 1. Persistence in a 2-D point set sampled from a rectangular grid. (a) 15 vertices or 0-simplices forming 15 independent components with β0 ¼15. (b) As the distance
threshold is increased the vertices connect to their first nearest neighbors resulting in 3 connected components (3 parallel lines) or β0¼3. (c) Each point now connects to its
second nearest neighbor thus forming 8 squares, each square representing a hole. The whole structure is a single connected component, thus β0¼1 and β1¼8. (d) Each vertex
is now connected to its third nearest neighbor forming triangles, thus, closing the 8 holes. Therefore, β0¼1 and β1¼0.
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