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1. Introduction

Heat treatment is one of the most energy intensive manufactur-
ing processes. For example, the heating of ingots prior to a hot rolling
operation accounts for up to 70% of the process energy consumption
(2–2.4 GJ/ton). There exists significant potential for energy conser-
vation in these processes [1]. One promising approach is to explore
efficient production schedules. Recent years have seen several
studies directed at manufacturing scheduling for improved energy
efficiency while considering peak load [2], carbon footprint [3], and
time-of-use (TOU) and real-time electricity pricing (RTP) [4]. Other
work has aimed at optimizing energy related objectives and
production efficiency simultaneously. For example, Liu [5]
addressed a batch scheduling problem considering carbon emis-
sions and total tardiness. Luo et al. [6] studied electricity cost and
makespan minimization in a hybrid flow shop. Most of these studies
on energy efficient scheduling have concentrated on electricity
related energy consumption, and all the input parameters (e.g.,
processing time and due dates) and thus objectives (such as energy
consumption and completion time) are assumed to be deterministic.

Significant uncertainties exist in the operation of heat
treatment equipment, which have to be considered in scheduling.
In a hot roll mill process, the primary energy required for heating is
in the form of a mixed gas (e.g., H2, CO, and CH4), which is
generated from coke oven (COG) and blast furnace (BFG) gases
[7]. The total energy consumption is calculated using the amount
of each type of gas consumed and its heating value. In practice, an
empirical heating value is used, and uncertainty in the data and in
the composition of the gas itself leads to uncertainty in the

calculated total energy consumption. Uncertainties also exist in
many critical process parameters, with some parameters only
loosely defined when creating a production schedule. For example,
the heating time for a given batch may be from 25 to 35 min, with
the exact value selected based on experience at the time of process
execution. Due to the inherent imprecision in the parameter, the
exact heating time is unknown when making a schedule.

In general, there are two approaches to describe variables with
uncertainty: random numbers and fuzzy numbers. The fuzzy
number approach has significant appeal, since it is sometimes
difficult in practice to collect sufficient data to characterize the
distribution of uncertain variables. Moreover, in a scheduling
context, some stochastic scheduling models are computationally
too expensive and cumbersome to apply in real-world applica-
tions. With this in mind, this paper will use a fuzzy logic approach
to address uncertainty. The literature reports that relative to
stochastic approaches, fuzzy logic is computationally simpler and
faster and provides more flexibility. Cheng et al. [8] employed
fuzzy processing time for a batch machine scheduling problem to
minimize makespan. However, uncertainty in due dates and
energy related objectives were not considered.

This paper presents a model to minimize the total energy
consumption associated with the mixed gas input and total
tardiness for a heat treatment batch scheduling problem. This will
be achieved via a novel multi-objective fuzzy logic based
optimization model, which will be solved using a non-dominated
sorting genetic algorithm. The method considers uncertainties in
gas energy consumption, processing time, and due dates.

2. Model description

This work considers the problem of batch scheduling of n

workpieces in a gas-fired heat treatment operation, where
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theworkpieces have different arrival times. Two types of gas, COG
and BFG, are supplied to the heat-treat furnace. The gas flow rates
when the furnace is idle are assumed to be much lower than during
the actual operation, and are only sufficient to maintain furnace
temperature. Furnace interruption and breakdown are not consid-
ered. The processing time of a batch of workpieces is determined by
the workpiece in the batch that has the longest processing time.

2.1. Gas energy consumption

The heating values of COG and BFG often fluctuate owing to
changes in gas composition (amounts of H2, CH4, etc.). To address
this issue, the heat values may be expressed as a fuzzy number,
denoted as h̃COG and h̃BFG (in MJ/m3). During idling and active
heating the flow rates of COG and BFG are f i

COG; f i
BFG, f s

COG, and f s
BFG

(all in m3/min), respectively. The processing time of a batch and the
idle time between batches are nondeterministic. For a given batch
schedule, p, which has m batches, the total energy consumption
may be described as:

ẼðpÞ ¼ ẼðpÞs þ ẼðpÞi

¼
Xm
j¼1

fðh̃COG�f s
COG þ h̃BFG�f s

BFGÞ�T̃
s

j þ ðh̃COG�f i
COG

þ h̃BFG�f i
BFGÞ�T̃

i

jg; (1)

where T̃
s

j denotes the processing time of the jth batch, Bj, and T̃
i

j

denotes the idle time between batch Bj�1 and Bj (both T̃
s

j and T̃
i

j are
fuzzy numbers). From the above assumption,

T̃
s

j ¼ max
Ji 2 Bj

ðt̃iÞ; (2)

where Ji refers to the ith workpiece within Bj, and t̃i is its nominal
processing time.

2.2. Batch scheduling model formulation under uncertainties

Tardiness is a key performance measure to evaluate a schedule.
To guarantee that the schedule satisfies the demand of customers,
a decision must be made to either wait for more workpieces to
arrive or start a partial batch. The former may substantially delay
the workpieces that are waiting, while the latter may result in
more energy consumption. Suppose each workpiece Ji has a due
date d̃i, where sometimes this due date may have flexibility. The
tardiness of Ji is then defined as:

T̃ i ¼ maxð0; C̃i�d̃iÞ; (3)

where C̃i denotes the completion time of Ji. Given that the tardiness
penalty weight for Ji is wi, the total weighted tardiness may be
expressed as:

gTWT ¼
Xn

i¼1

ðwi�T̃iÞ; (4)

Given the foregoing relations, the problem can be formulated as
a fuzzy multi-objective batch machine integer programming
(FMBMIP) model. Optimizing this model will find the batch
schedule that minimizes the total gas energy consumption and
total weighted tardiness.

min ẼðpÞ

min gTWT

s.t.

Xm

j¼1

Xij ¼ 1; 8 i ¼ 1; . . .; n; (5)

Xn

i¼1

Xij�C; 8 j ¼ 1; . . .; m; (6)

ri�Xij�R̃j; 8 i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; m; (7)

t̃i�Xij�T̃
s

j ; 8 i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; m; (8)

R̃j þ T̃
s

j�C̃j; 8 j ¼ 1; 2; . . .; m; (9)

C̃j�1 þ T̃
s

j�C̃j; 8 j ¼ 1; 2; . . .; m; (10)

n

C
�m�n; m 2 integer; (11)

Xij 2 f0; 1g; 8 i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; m; (12)

C̃j; R̃j; T̃
s

j � 0; 8 j ¼ 1; 2; . . .; m; (13)

where Xij is equal to 1 if workpiece i is assigned to batch j, and
0 otherwise. C is the capacity of the heat treat furnace. ri is the
arrival time of workpiece i, and R̃j is the starting time of batch j. C̃j is
the completion time of batch j.

Constraint (5) ensures that each workpiece is only assigned to
one batch. Constraint (6) stipulates that the capacity of the furnace
cannot be exceeded. Constraints (7) and (8) indicate the starting
time and the processing time of a batch. Constraints (9) and (10)
give the definition of C̃j and establish the relation of the completion
time between two consecutive batches. Constraint (11) sets up a
restriction on the number of batches. Finally, Constraints (12) and
(13) force nonnegativity and integer conditions.

3. Model development and optimization algorithm

3.1. Expanding the model based on fuzzy logic

The preceding section established a general model for the batch
scheduling problem under uncertainty. Variables subject to
uncertainty in the heat treatment problem include the heating
values of COG and BFG, processing times, and due dates. A fuzzy
logic approach is adopted to deal with this uncertainty. As will be
evident, a triangular membership distribution is used for each
fuzzy parameter in the model.

It is assumed that the heating values are represented by triplets,

h̃COG ¼ ðhCOG; h0
COG; hCOGÞ and h̃BFG ¼ ðhBFG; h0

BFG; hBFGÞ, for which

h0
COG and h0

BFG are the respective defuzzifiers, and h and h are the left

and right fuzzy bounds. As an example, for h̃COG the membership
function mhCOG

ðxÞ may be defined as (also see Fig. 1(a)):

m
h̃COG
ðxÞ ¼

x�hCOG

h0
COG�hCOG

hCOG�x�h0
COG;

x�h0
COG

hCOG�h0
COG

h0
COG�x�hCOG;

0 otherwise:

8>>>>><
>>>>>:

(14)

Given the starting time of batch j, R̃j ¼ ðRj; R0
j ; RjÞ, and the

processing time of batch j, T̃
s

j ¼ ðTs
j ; Ts0

j ; T
s

j Þ, the completion time of

batch j may be calculated by the fuzzy summation operator:
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Fig. 1. Membership function and inverse membership function.
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