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1. Introduction

The productivity of micro milling processes is often compro-
mised by its low process stability because of low tool stiffness and
high specific cutting force. Process damping associated with edge
ploughing and flank interference, by contrast, improves machining
stability [1], and can offer a viable means to improve the stability
margin for micro milling.

General milling stability problems have been under extensive
investigations and significant amount of work is still actively devoted
to studying micro milling stability, where the intricacy of the edge
geometry, size effect in the cutting and ploughing mechanism, and
particularly, the identification and modeling of process damping and
their effects on stability have been the foci of these investigations. In
these investigations, frequency domain approaches can be used for
their efficiency in constructing stability diagrams [2–4] whereas
time domain simulation allows easy accommodation of the process
nonlinearities and prediction of detailed process information such as
the tool trajectory, surface texture, and chatter frequency [5–7]. The
effects of edge preparation on micro milling stability has been
analyzed through experimental investigation in [8].

The modeling and identification of process damping [9] and its
effect on milling stability have been documented for general
milling [10–14]. Stability analyses incorporating a process damp-
ing model in micro milling have been reported in [3,4]. The process
damping coefficient in [3] was obtained from the ploughing force
coefficient acquired from experimentally measured cutting forces,
while finite element simulation was used to predict the process
damping coefficients in [4] through a contact mechanics model.

Stability diagrams with process damping are generally charac-
terized by an increasing stability trend at low speeds, forming a
curved-up envelope of the critical limits toward the low-speed

region. The critical stability limit for a turning process with process
damping has been reported in [12,14]. But, the critical stability limits
with respect to the cutting speed and the attributes of their envelope
for a milling process have not been quantitatively analyzed.

By adopting the mechanistic local milling force model with process
damping in [9], this paper extends the existing critical depth model for
a symmetric structure without process damping in [15] to reveal the
roles of process damping and other system parameters in characteriz-
ing the curve of critical stability limits. In the following, the equivalent
process damping ratio and decoupled system characteristic equation
are first derived. The formulas for the critical depth of cut and
asymptotic speed are then presented, followed by model validation
through comparison with published results and experiments.

2. Characteristic equation with process damping ratio

A micro milling process with single-mode symmetric dynamics
is shown in Fig. 1(a), where the local cutting forces resulting from
the shearing and ploughing effects depicted in Fig. 1(b) can be
expressed as [9],

df t

df r

� �
¼ Kts

Krs

� �
ð sin u cos u Þ dxd

dyd

� �� �
db þ Ktp

Krp

� �
sin u cos uð Þ ẋðtÞ

ẏðtÞ

� �� �
db

vc
(1)

where the first curly bracket on the right represents the specific
regenerative cutting force resulting from the dynamic feeds, {dxd,
dyd}T = {x(t) � x(t � T), y(t) � y(t � T)}Tand T is the tooth period. Kts

and Krs are the tangential and radial constants, respectively, for the
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stable micro milling processes with process damping. The asymptotic spindle speed of a theoretically

infinite stable depth of cut is shown to be proportional to the modal natural frequency, radial ploughing

constant and radial immersion angle, but inversely proportional to the shearing related cutting constants

and tool diameter. These formulas enable identifying the asymptotic speed, absolute stability limit, and in-

process radial ploughing constant from experimental stability limits without requiring modal parameters.

The presented model is validated by comparison with prior works and verified by experiments.
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Fig. 1. (a) A schematic of micro milling process, (b) the local dynamic chip shearing

and edge ploughing forces with tool penetration angle, k.
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shearing mechanism. The second curly bracket accounts for the
process damping forces caused by tool vibration in the radial direc-
tion. Ktp and Krp are respectively the tangential and radial dynamic
ploughing constants representing the specific ploughing force gene-
rated per radian change in the tool penetration angle, k ¼ ṙ=vc , where
ṙ ¼ fsin u; cos ugðẋ; ẏÞT is the radial velocity and vc is the cutting
velocity. Transforming the local cutting forces into x–y directions and
integrating them along the active cutting edges of the rotating cutter
as in [16] enables a total dynamic force vector to be obtained in the
form of

f xdðtÞ
f ydðtÞ

� �
¼ KsðtÞ

dxdðtÞ
dydðtÞ

� �
þ CpðtÞ

ẋðtÞ
ẏðtÞ

� �
(2)

where Ks is the process stiffness matrix for the dynamic feed
vector and Cp is the viscous processing damping coefficient
matrix. These two matrices are periodic functions, but only
the zero-order terms of the matrices are considered in this paper.
The zero-order or average process stiffness matrix, Ks0, can be
expressed as [15]

Ks0 ¼
NKtsa

2p
Ps (3)

where N is the number of flutes and a is the axial depth of cut. Ps is
the zero-order directional matrix:

Ps ¼
1 �krs

krs 1

� �
�0:25cos 2u 0:5u þ 0:25sin 2u

�0:5u þ 0:25sin 2u 0:25cos 2u

� �u2

u1

(4)

where krs = Krs/Kts is the radial force ratio and u1 and u2 are the entry
and exit angles, respectively. Similarly, the average viscous process
damping coefficient can be expressed as

Cp0 ¼
NKtpa

2pvc
Pp (5)

where Pp, the zero-order directional matrix for the process
damping, is the same as that for the regenerative forces except
the radial force ratio in Eq. (4) is replaced by krp = Krp/Ktp.

For a micro milling process, the spindle-holder-tool assembly
can be approximated as a second-order isotropic dynamic system.
Using the zero-order force models, the dynamic equation for the
micro end mill with process damping can be obtained as

m 0
0 m

� �
ẍ
ÿ

� �
þ cs 0

0 cs

� �
þCp0

� �
ẋ
ẏ

� �
þ k 0

0 k

� �
x
y

� �
¼ �Ks0

dxd

dyd

� �
(6)

where m, c, and k arethe dominant modal parameters for the end
mill. This equation can be solved for stability limits in the frequency
domain by using methods presented in [3,4]. Because the axial depth
appears in both the Ks0 and Cp0 matrix, the limiting stable depth has
to be solved iteratively.

The coupled directional matrices in Eq. (4) can be decoupled in
their eigenvalues, li, and eigenvectors, Qi, as follows:

Ps ¼ Q s
ls 0
0 ls2

� �
Q s
�1 and Pp ¼ Q p

lp 0
0 lp2

� �
Q p
�1 (7)

Ps and Pp have similar structures and thus similar eigenvalues
and eigenvectors. The eigenvalues of Ps were expressed as [15]

li;i2 ¼
ðkriur�

ffiffiffi
d
p
Þ

2
; d ¼ ð1 þ k2

riÞsin2ur�ur
2 (8)

For a positive discriminant, d, of a lower radial immersion angle,
ur = u2 � u1, the two eigenvalues are real with the higher one, li,
being dominant in the stability sense, whereas the dominant
complex eigenvalue of a higher immersion angle with a negative
discriminant has a negative phase:

li ¼ jlijejfli ; jlij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkriurÞ2�d

q
2

; fli ¼ tan�1 �
ffiffiffiffiffiffiffi
�d
p

ðkriurÞ

  !
(9)

The subscript i in Eqs. (8) and (9) is substituted by s and p for the
shearing and process damping effect, respectively.

Substituting the expressions for Ps and Pp in Eq. (7) into
Eqs. (3) and (5), respectively, and through modal transformation of

{x, y}T = Qs{q1, q2}T, Eq. (6) can be decoupled as

m 0
0 m

� �
q̈1

q̈2

� �
þ cs 0

0 cs

� �
þ cp 0

0 cp2

� �� �
q̇1

q̇2

� �
þ k1 0

0 k1

� �
q1

q2

� �

¼�NKtsa

2p
ls 0
0 ls2

� �
q1�q1ðt�TÞ
q2�q2ðt�TÞ

� �
withcp ¼

NKtpa

2pvc
lp (10)

if Qs and Qp are the same so that Qs
�1Qp = 1. q1 and q2 are the modal

coordinates with q1 being the dominant one with the less stable
eigenvalue. Eigenvectors are generally different if their respective
radial force ratios are different. However, this difference can be
shown to diminish with a higher radial immersion, where both
eigenvalue are complex and the approximation of Qs

�1Qp = 1 can
be justified. For the case of slot milling, Qs and Qp are the same
regardless of their radial constants. For krp = 1, 1.2, 1.5 and 2, the
minimum immersion ratios are 0.41, 0.5, 0.6 and 0.72, respectively,
to yield complex eigenvalues. Thus the radial immersion ratio is
assumed to be higher than 0.6 for a krp of lower than 1.5 in this
paper to justify this approximation. Because the cutting force ratio
krs is generally lower than krp, both pairs of eigenvalues are
complex values.cp and cp2 in Eq. (10) are the average process
damping coefficients for modes 1 and 2, respectively, and because
q1 is the dominant mode, only cp needs to be considered. It can be
seen from Eq. (10) that, for a complex lp, only the real part
generates the viscous damping force. The imaginary part has the
effect of strengthening the system stiffness, but it can be shown to
generally exert a markedly less effect compared with the structural
stiffness; therefore, it is not considered in this paper. The real part
of lp can be found from Eq. (8) to be krpur/2 and the average process
damping coefficient cp and damping ratio zp can then be written as

cp ¼ N
Krpur

4p

� �
a

vc
and zp ¼

cp

2
ffiffiffiffiffiffiffi
mk
p ¼ z0pa; z0p ¼

NKrpur

8p
ffiffiffiffiffiffiffi
mk
p

vc

(11)

where zp
0 is the specific process damping ratio. These three

damping related factors are shown to be proportional to the flute
number, radial ploughing constant and radial immersion angle.

Based on the Laplace transform of the decoupled Eq. (10), the
dominant system characteristic equation has the expression of

1 þ NKtsa

2p
ð1�e�sTÞlsHpðsÞ ¼ 0 (12)

where the modal dynamics Hp has a total damping ratio of

zt ¼ zs þ zp; zs ¼
cs

ð2
ffiffiffiffiffiffiffi
mk
p

Þ
(13)

3. Critical depth of cut and asymptotic speed

For the characteristic equation in the form of Eq. (12), the critical
depth of cut with only structural damping can be expressed as [15]

ac0 ¼
2pkzs

NKts

ð1 þ c0
2Þ

jlsjðc0cos fls�sin flsÞ
with c0 ¼ 1 þ 2fls

p
(14)

or in an alternative form of

ac0 ¼ Akzs with A ¼ 4p
NKtsgrs

and grs

¼ 2jlsjðc0cos fls�sin flsÞ
ð1 þ c0

2Þ (15)

where grs is the radial immersion gain for the shearing mechanism.
By substituting zs with the total damping ratio into Eq. (15), the
new critical stability limit with process damping becomes

ac ¼
Akzs

1�Akz0p
; Akz0p ¼

Krpur

Ktsgrs

� �
f n

DV=60
(16)

with fn in Hz and V in rpm. As the spindle speed decreases,
thecritical stability depth increases and the envelope of the
stability lobes curves upward. Two extreme conditions establish
the limits of the critical curve. The lower limit of the curve is
defined by ac0, the absolute stability limit in high-speed regions
without process damping, whereas the left margin is defined by
the asymptotic speed, a limiting speed corresponding to an
infinite stable depth.
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