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Enhancing dynamic characteristics of fixtures for large workpieces is essential to assure chatter free
machining of heavy-duty milling operations. Variable stiffness tuned mass dampers (VSTMD) can
effectively improve the dynamic stiffness of modular fixtures by changing their dynamic characteristics.
The theory of a new VSTMD concept is presented. Their realisable optimal tuning is determined and the

results are compared to the standard constant stiffness TMDs. By means of the developed automatic
tuning procedure, stiffness is varied via a rotary spring, while damping is provided by eddy currents. The
prototype and the effectiveness of the concept are experimentally validated by heavy-duty milling tests

on a modular fixture.
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1. Introduction

In heavy-duty machining operations, the selection of proper
workholding equipment is one of the most important technical
aspects to consider for an optimum process performance. Large
machined parts usually require a complex custom fixturing system
designed especially for very small production batches. This
requirement is usually covered by modular workholding systems
based on standard elements that can be combined to hold parts of
different shapes and sizes to machine.

Workholding equipment is usually designed just to fulfil
requirements in terms of geometry and/or clamping forces,
whereas the importance of its dynamic flexibility is usually
underrated. In roughing operations of large workpieces, however,
process instability often occurs due to the dynamic flexibility of the
workholding system (see Fig. 1a). For this reason, the adequate
dynamic performance of the workholding is crucial for an
optimum machining performance. Many solutions have been
engineered to improve the dynamic stiffness of the machine tool,
the spindle and/or the implemented cutting tools.

Clamping fixture dynamic design has recently come into the
spotlight. Several approaches can be followed for this purpose,
from active control solutions [1-3] to conventional passive
damping techniques, all aiming to improve the dynamic perfor-
mance of clamping fixtures. As an intermediate option, tuned mass
damper (TMD) technology is regarded as a proper solution for
workholding vibration attenuation [4-6].

Active techniques have the advantage of versatility, since they
adapt to changing conditions but they are usually rather complex
and costly for conventional processes. On the other hand, TMDs are
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simple and affordable in most cases but they are not effective
enough when the frequency of the critical mode changes.

In this context, Slavicek and Bollinger proposed the application
of variable stiffness tuned mass dampers (VSTMD) for which the
natural frequency and damping of the system can be varied
[7]. They changed the tuning of the damper squeezing an
elastomeric O-ring, creating a relation between the preload of
the ring and the tuning frequency. However, the damping and
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Fig. 1. Critical vibration modes of vertical workholding equipment.
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stiffness were totally coupled [7,8]. Seto [9] solved this problem
changing the connection point between the moving mass in a
cantilever beam. The viscous damping was provided in parallel by
means of fluids or magnetically using eddy current effect.

In this study, the classic VSTMD approach is upgraded
proposing an automatic optimal tuning of the damper at any
cutting condition. This way, the developed VSTMD presents the
same performance as an active solution, while it keeps the
simplicity and moderate price of the classical TMDs.

First, the possible chatter problems on large-scale modular
fixtures are briefly summarised. Then a new frequency dependent
tuning criterion is derived for VSTMD. The issues of mechanical
design and the iterative algorithm for the optimal tuning of the
VSTMD are followed by the experimental validation of the
prototype. The results open the way for a new generation of
self-tuneable VSTMDs implemented on large clamping fixtures
based on several modular components where the VSTMD is
another module.

2. Chatter problem in modular clamping fixtures

The critical modes related to workholding equipment for large
parts present mainly low frequency, clear and simply shaped
vibration modes, like bending or twisting of the whole fixture and
workpiece assembly (see Fig. 1b). These modes are usually
dominant and show a clear frequency separation with respect to
other adjacent secondary modes. In these cases, basic modal
analysis techniques can describe the essential dynamic behaviour
of workholding systems with 2-3 essential modes only.

One of the most effective techniques to eliminate chatter
problems in workholding systems is to enhance the damping of
the modes which are related to chatter vibrations. This can be
achieved by the addition of TMDs to the workholding system. In
these cases, the workholding is assumed to have a single dominant
mode in the frequency range without coupling between further
modes, and consequently, the well-known analytical formula for
the axial depth of cut at the stability limit can be considered
[10,11]:
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where K; is the tangential cutting coefficient, Z is the number of
teeth of the cutting tool, By is the average value of the directional
factor and H(w) is the frequency response function (FRF).

Eq. (1) shows that the limit depth of cut can be increased in the
same proportion as the real part of the FRF is maximised or
minimised (depending on the sign of By).

The modular nature and varying mass of the part to be
machined result in different possible natural frequencies and
related chatter frequencies. Therefore, a wide tuning frequency
range is required to solve the possible chatter problem.

3. Variable stiffness tuned mass damper (VSTMD)
3.1. Tuning criteria for a TMD

A TMD is an inertial mass added to the system in question. The
mass is connected via a linear spring of stiffness k, and damping
c». The values of these parameters are tuned to damp the critical
mode of the original system that may produce chatter.

The most popular tuning strategies of TMDs are based on the
classical analytical expressions developed by Den Hartog [12] and
Sims [6]. The tuning requirements for chatter suppression in
machining processes may differ from Den Hartog’s optimum. Sims
[6] used the real part Re(H(w)) instead of the magnitude |[H(w)| of
the FRF for the tuning optimisation. This is done in order to
maximise the achievable depth of cut a within the classical
stability limit given in Eq. (1).

For chatter suppression, Sims’ values provide optimal solution.
The dimensionless parameters presented in Table 1 are defined in

Table 1
Dimensionless dynamic parameters.

Tuning (f): Mass damper natural f= %
frequency to original system
natural frequency ratio
. . . m
Mass ratio (1t): Mass rat.lo. between n= an
the damper and the original system
Dimensionless freq. (g): Excitation g= %

frequency over the natural frequency

of the system k
Damping ratio (x): Damping of VSTMD  x

to Den Hartog critical damping [12]
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order to simplify the tuning equations. The real part of the system
formed by the critical mode to be damped and the additional TMD
can be expressed by these dimensionless parameters, assuming a
dominant mode and a negligible damping of the original system
(c1=0) [6]:
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Based on this expression, and considering all the possible
tuning parameters for a TMD, Sims found three invariant frequency
points, so-called locked frequencies. The optimum tuning frequen-
cy is found when two of these locked frequencies present the same

amplitude in the real part and are local maximum or minimum
depending on the sign of Bo.
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where fs. and fs_ stand for Bo > 0 and B, < 0, respectively. These
fixed parameters assure maximum stability when the system is
limited by one dominant mode with negligible damping.

3.2. Optimal tuning of VSTMD

In this work, a new TMD concept is presented. Stiffness
variation capability is added, hence, a new optimal tuning
definition is possible. While Den Hartog and Sims set a constant
optimum tuning valid for every condition, VSTMD allows a variable
tuning which depends on the frequency of interest, which could be
the chatter frequency or the spindle speed of machining.

Thus, the search of the local optimum for each frequency
improves the overall optimisation. Eq. (2) is derived with respect to
the frequency tuning f to find the local maximum or minimum, and
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Fig. 2. Comparison of real parts (a) and (b) and stability lobes (c) and (d) of the
optimally tuned frequency response function versus Sims’ tuning for 8o >0 and
Bo<0.
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