Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00078506)

CIRP Annals - Manufacturing Technology

journal homepage: http://ees.elsevier.com/cirp/default.asp

Study on 5-axial milling on microstructured freeform surface using the macro-ball cutter patterned with micro-cutting-edge array

J. Xie *, Y.H. Li, L.F. Yang

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China Submitted by K.-D. Bouzakis (1), Thessaloniki, Greece.

A R T I C L E I N F O

Keywords: Micro-machining Milling Micro-grinding

A B S T R A C T

A 5-axial micro-replication milling of microstructured freeform surface is proposed by a novel ball cutter, on which micro-cutting-edge array is patterned by a diamond wheel V-tip in micro-grinding. It can efficiently and precisely machine arbitrary-curved microgroove and micro-pyramid arrays on aluminium alloy and die steel. The form errors reach 6.6 μ m in 253.6 μ m in microstructure depth and 1.6 μ m with 50 mm in macro-freeform, respectively. The rake angle, however, is decreased so as to increase cutting temperature. Moreover, increasing wheel speed and decreasing feed speed decrease micro-form errors and surface roughness. The cross-spark-out cutting may deburr.

© 2015 CIRP.

1. Introduction

A hybrid of microstructure array and freeform surface may produce higher value-added applications for surface engineering, but its fabrication needs higher operation degree and finer tool tip. Although a 5-axial milling has been employed to fabricate freeform surface by using a macro-cutter [\[1,2\]](#page--1-0), the microstructure surface was milled by using a micro-cutter $[3]$. Similarly, the 5-axial grinding was a possibility to machine such curved surfaces in high form accuracy and surface quality by macro-curved grinding wheel [\[4\]](#page--1-0), but the microstructure array was ground by a micro-diamond wheel V-tip [\[5\].](#page--1-0) Moreover, the laser machining had the difficulty to control the machined micro-form accuracy $[6]$. The etching had no way to precisely machine the microstructure array on macrofreeform surface [\[7\].](#page--1-0)

In this paper, a novel hybrid of macro- and micro-millings is proposed to efficiently and precisely replicate the micro-cuttingedge array of macro-ball cutter on freeform workpiece in 5-axial milling. First, a mutual-wear form-truing was developed to control the sharpness and accuracy of micro-diamond wheel V-tip; then it was used to perform the micro-grinding of micro-cutting-edge array on ball cutter surface; next, the geometrical relation between the micro-cutting-edges and the milled microstructure was constructed; finally, the milling experiments were performed to investigate cutting temperature, micro-form accuracy, surface roughness and micro-deburring.

2. Micro-grinding of micro-cutting-edge array on ball cutter

[Fig.](#page-1-0) 1 shows the micro-grinding of micro-cutting-edge array on ball cutter by using a diamond wheel V-tip. In wheel V-tip truing, a

<http://dx.doi.org/10.1016/j.cirp.2015.04.075> 0007-8506/© 2015 CIRP.

CNC mutual-wear between rotary grinding wheel and positioned dresser was employed along the V-shaped linear interpolation movement (see [Fig.](#page-1-0) 1a). The form-trued wheel V-tip angle was identical to the angle θ_0 of V-shaped truing paths [\[5\].](#page--1-0)

Then, the form-trued diamond wheel V-tip was employed to perform a micro-grinding. The rotary axes of ball cutter and grinding wheel were positioned on the YZ-section (see [Fig.](#page-1-0) 1b). The rotary cutter moved along wheel cutting direction at the feed rate v_f . Along with an accumulate depth of cut a, the wheel V-tip profile at the wheel speed v_w was gradually replicated on the ball cutter surface through micro-cuttings with many diamond grains protruded along wheel V-tip profile. After that, next microgrinding was performed with an interval w. Finally, the microcutting edge array was produced on the arc edge profile of cutter.

[Fig.](#page-1-0) 2 shows the geometrical parameters of micro-cutting-edge array on ball cutter surface. The micro-cutting-edges were informally patterned on the arc edge profile of cutter by overlapping each neighbouring microgrooves whose shapes were derived from the wheel V-tip profile (see [Fig.](#page-1-0) 1a). Its location was dominated by the position angle α .

Although the semi-angle θ_1 was equal to half of wheel V-tip angle θ_0 , the semi-angle θ_2 became larger due to the nonorthogonal rotation between grinding wheel and ball cutter (see [Fig.](#page-1-0) 1b). The semi angles θ_1 and θ_2 are described as follows:

$$
\begin{cases}\n\theta_1 = \frac{\theta_0}{2} \\
\theta_2 = \max\left\{\arctan\left(\frac{2R - a_p}{2(R + r - a_p)} \times \tan(90^\circ - \alpha)\right), \theta_1\right\}\n\end{cases}
$$
\n(1)

where *is the wheel radius and* $*r*$ *is the cutter radius (see [Fig.](#page-1-0) 1).*

Because the micro-cutting-edge was formed by the circumferential V-groove, the flank angle β_n (n = 1, 2, responding to θ_1 and θ_2) decreased to 0° from the original β_0 (see [Fig.](#page-1-0) 2b). The rake angle γ_n was also decreased in comparison with the original γ_0 due to the

Corresponding author. E-mail address: jinxie@scut.edu.cn (J. Xie).

Fig. 1. Micro-grinding of micro-cutting-edge array on ball cutter surface using a diamond wheel V-tip: form-truing (a) and micro-grinding (b).

Fig. 2. The parameterization of micro-cutting-edge array of cutter: geometrical parameters (a) and cutting parameters (b).

semi-angle θ_n . They are described as follows:

$$
\begin{cases}\n\gamma_n = \arcsin(\sin \gamma_0 \times \sin \theta_n) \\
\beta_n = 0, \quad n = 1, 2\n\end{cases}
$$
\n(2)

3. 5-axial milling of microstructured freeform surface

Fig. 3 shows the 5-axial milling of microgrooved freeform surface. The microgroove array was machined by the microcutting-edges of cutter along the curved microgroove direction (see Fig. 3a). The micro-pyramid array was formed through the cross-milling of microgrooves. The cutter locations $cl_i(x, y, z)$ are described as follows:

$$
cl_i = cc_i + (r - a_p) \times n_i \tag{3}
$$

where n_i is a unit normal vector on the tangent point cc_i and i is the cutting point number.

The cutter axis vector t_i was controlled to be vertical to the tangent direction of microgroove. Namely, the angle between the normal vector n_i and the cutter axis vector t_i was equal to the cutter posture angle α (see Figs. 1b and 3b). In 5-axial milling, the **t**_i was used to control the rotation axes C and A. Hence, these

Fig. 3. The 5-axial milling scheme of microgrooved freeform surface: the microstructure replication (a) and the cutter location cl_i (b).

constraints are described as follows:

$$
\begin{cases}\n\mathbf{t}_{i} \cdot \left(\frac{\mathbf{C} \mathbf{C}_{i+1} - \mathbf{C} \mathbf{C}_{i-1}}{|\mathbf{C} \mathbf{C}_{i+1} \mathbf{C} \mathbf{C}_{i-1}|} \right) = 0 \\
\frac{\mathbf{t}_{i} \cdot \mathbf{n}_{i}}{|\mathbf{t}_{i}| \cdot |\mathbf{n}_{i}|} = \cos(\alpha)\n\end{cases}
$$
\n(4)

Due to the cutter rotation in milling, the milled microgroove angle θ is different from micro-cutting-edge angle (see Fig. 3b). It is described as follows:

$$
\theta = \theta_1 + \theta_3 \tag{5}
$$

where the semi angle θ_3 is given by

$$
\theta_3 = \max\left\{\theta_2, 90^\circ - \alpha\right\} \tag{6}
$$

4. Experiments and measurements

4.1. Experiments

Fig. 4 shows the experimental scenes. First, the form-truing experiment of diamond wheel V-tip was performed (see Fig. 4a). In form-truing, the angle θ_0 of inverted V-shaped linear truing paths was designed as 60 $^{\circ}$, thus the trued wheel V-tip was 60 $^{\circ}$ [\[5\]](#page--1-0). The truing conditions are shown in Table 1. It may protrude micro SD600 grains from the wheel V-tip (see Fig. 4a). The mean value of form-trued wheel V-tip angle reached 60.7° .

Fig. 4. Experimental scenes: form-truing (a), micro-grinding (b) and 5-axial milling (c).

Table 1

The form-truing conditions of diamond wheel V-tip.

CNC grinder	SMART-B818
Grinding wheel	SD600, bronze-bonded, $R = 75$ mm
Dresser	#600 GC stone
Truing path	60° V-shaped linear interpolation movement
Truing variables	v_w = 15.7 m/s, v_f = 200–100 mm/min
Coolant	BM2 soluble synthetic

In the micro-grinding experiment (see Fig. 4b), the microcutting-edge array width w, depth d and number n_c were designed as 400 μ m, 253.6 μ m and 4 for the cutter with $r = 6$ mm, and 200 μ m, 126.8 μ m and 5 for the cutter with $r = 1.5$ mm, respectively. The micro-grinding conditions are shown in Table 2.

Finally, the 5-axial milling experiments of microstructured freeform surface were performed (see Fig. 4c). The freeform surface was designed by functional point cloud [\[2\].](#page--1-0) The 5-axial milling conditions are shown in [Table](#page--1-0) 3.

Table 2				

The micro-grinding conditions of micro-cutting-edges on cutter surface.

Download English Version:

<https://daneshyari.com/en/article/10673333>

Download Persian Version:

<https://daneshyari.com/article/10673333>

[Daneshyari.com](https://daneshyari.com)