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This work was aimed at reconstructing the structural model of as-built industrial facilities like plants
purely from on-site point cloud measurement data. Focus was set on finding the internal structure of
complex objects hidden behind the massive point cloud by exploiting connectivity information in the data

and the linear characteristics of the typical components. A workflow is presented with emphasis on data
filtering, connectivity graph construction, as well as the recognition of elementary objects and their
relations. Results are demonstrated using data of an industrial case study.
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1. Introduction

The motivation of this research was provided by industries that
construct, maintain, and retrofit complex engineering objects like
plants or manufacturing facilities. When operating in industrial
plants, such as thermal and nuclear power stations or factories, the
route plans for transporting pipes, equipment and other objects
into the plant area are typically prepared manually by engineers
who can only refer to 2D blueprints [1]. Hence, workers of
maintenance, repair and overhaul (MRO) activities must face risks
due to flaws rooted in unrecorded modifications, deformations and
missing accounts of incidental equipment such as suspending
fixtures and cranes. In general, the essential condition of
performing MRO tasks is to have an accurate model of the overall
object [2,3]. Even though models are available, there is always a
mismatch between model and reality [4], and often no models are
available at all. By making use of up-to-date laser scanning
technology, huge amount of data can be collected which refer to
the surface of objects [5]. In this way, one can also build quasi-
volumetric models of industrial equipment [6]. However, creating
an appropriate structural model out of this measurement data is a
tedious, mostly manual and time-consuming process. For a
complex object such as a power plant, model construction from
point clouds may take several months. Hence, there is a need of a
computer-aided reverse engineering process that supports and
accelerates this activity [5].

This research has a precursor work that was aimed at matching
the existing CAD model of a complex engineering object to the
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point cloud measured on its actual surface [4]. Now, the primary
goal is to develop generic technologies for constructing explicit
structural volumetric models of such objects from big, noisy and
unstructured sets of data. The current work is much more
concerned with recognizing the typical components and their
hidden topology than reconstructing the surface features of
measured objects. A compact, semantically rich geometric model
of the object at hand is sought that complies with the background
knowledge of the problem domain.

Such a semantic model is a prerequisite of making inferences in
MRO activities [3]. Recently, in production engineering there have
been developed semi-automatic methods for identifying the
structure of assemblies containing complex geometries [2], by
using technologies of laser scanning and industrial computed
tomography [7]. Research is driven by similar motivation also in
building information modeling (BIM) where objects like walls,
floors, ceilings and openings are to be recognized as far as possible
without manual intervention [8-10]. Recognition is typically
concentrating on the surface of objects, via polygonal meshes and
parametric surface models fitted to the point cloud. Hence, state-
of-the-art methods generate models of complex objects in terms of
structured surface meshes [11]. In contrast, the main novelty of
the method presented here is that it looks for and exploits the
topology of a complex engineering object that is underlying its
representative point cloud.

2. Problem statement

The developed object recognition method rests on a few generic
assumptions. First, the point cloud—even if data is taken from a
number of different scanner positions—is registered. It is also
supposed—and in some stages of the recognition workflow also
exploited—that the complex object is assembled from linear
extruded elementary objects such as pipes, beams, pillars, or even
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from walls and cuboid objects. However, the availability of the CAD
model of the object is not assumed.

The inputs for the recognition process are (1) a 3D registered
point cloud of the measured complex object, (2) prior knowledge of
the types of its elementary components, and optionally, (3)
additional information on the exact geometries of the potential
elements (catalog of standard beams) may be available, too.

The results of recognition should be a compact representation of
the measured object consisting of (1) its identified elementary
objects, (2) the actual geometric parameters of these components,
as well as (3) their connectivity relations. Furthermore, (4) each
point of the cloud has to be indexed either with the components
found or marked as unidentified.

Because of the industrial motivation, the main performance
criteria are twofold: (1) reducing the overall processing (manual
and computational) time by increasing the level of automation, as
well as (2) achieving as high as possible recognition accuracy, even
in face of partial or noisy data. Note that the evaluation of results in
the target domains requires also a historical perspective and
human introspection.

3. Workflow of object recognition from point cloud data

The problem statement implies a number of challenges. The
point cloud data which is typically in the proprietary format of a
particular scanning system should be transformed to a uniform
representation. Because of the sheer size of the data (in the order of
1000 million points, hundreds of GB), efficient storage and query
call for special indexing and database management solutions. The
point cloud is collected from the results of a series of on-site
measurements: due to occlusion, shadowing, and inaccessibility, it
is inevitably partial and noisy. Even without clutter and occlusion,
the area may contain objects that do not really meet the linearity
assumption. Furthermore, objects assembled of linear elements
may be without any characteristic direction, like a meandering
system of bended pipes. Finally, background knowledge of the
actual domain should be represented in a way that is, on one hand,
amenable for automatic computations, and, on the other hand,
meaningful for the users of the object recognition method.

A workflow has been developed for solving the problem, with
specific regard to the above challenges. Fig. 1 presents this
workflow, while the subsequent sections describe in short the key
principles and ideas of the processing stages. Technical details of
preprocessing are not elaborated here.
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Fig. 1. Workflow of the object recognition process.

4. Principles and representations

The representations used for transforming the 3D point cloud
into a structured model of a complex object are based on some
general engineering principles. Firstly, aggregation is used when
collecting points of the cloud into a discrete, uniformly sized 3D
grid structure and working with these voxels (or their centroids)
instead of points in some calculations. Furthermore, voxels with
low point density are filtered out. Often, it is still impossible to

process data of the complete investigated area at one time. Hence,
the area is decomposed into regions of manageable size. The
recognition process can run in each region simultaneously.
However, in order to retain connectivity information, there is a
slight overlap between the adjacent regions; common voxels on
the borders are processed in each respective region. Next, it is
assumed that topological relations between elementary objects
can be originated in the connectivity of their corresponding voxels.
Hence, voxels in close proximity are represented in a voxel
connectivity graph (VCG) where nodes denote voxels and an edge
stands for any two voxels that are adjoining in space. Any region
under study is typically represented by a VCG of disjoint subgraphs.
The final principle exploits that complex objects are built of
basically linear components. Hence, each VCG has also a more
refined alternative model where so-called branches and their
connectivity are represented. In such a branch connectivity graph
(BCG) the nodes stand for branches composed of specific connected
subsets of adjacent voxels of a VCG, while edges represent
connections between branches. Fig. 2 presents the VCG and BCG
of a sample region used as working example throughout this paper:
this region of 2 x 2 x 1 m includes over 8 million points. With a
voxel size of 1 cm the corresponding VCG has c.a. 80,000 voxels. In
Fig. 2a, voxel structures in different colors stand for connected
subsets of the VCG, while in Fig. 2b color coding distinguishes
various branches of the corresponding BCG. The BCG provides a
more articulated representation of the measurement data and hints
already at the presence of typical object types. Section 5 describes
how these graphs are generated from the initial point cloud, while
Section 6 deals with the recognition of elementary objects.
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Fig. 2. VCG (a) and BCG (b) built over the data of the sample region.
5. Point cloud filtering and connectivity graph construction
5.1. Filtering and VCG composition

Filtering and VCG composition are aimed at (1) removing the
noise from the input data and (2) determining the connected
subsets of voxels that are good candidates for object recognition.
The procedure composes a VCG, where (1) the amount of points in
each voxel is over a threshold, and (2) the number of voxels of any
connected components in the VCG exceeds a critical limit. Voxels
(and included measurement points) not meeting the above
conditions are removed. Since this may change connectivity, the
procedure is repeated iteratively. By interleaving filtering and VCG
construction, both scattered and isolated points are removed from
further investigations. Hence, the procedure focuses the subse-
quent stages of the workflow on those areas of the space that are
not only densely populated by points, but contain candidates of
large enough complex structures.

5.2. Construction of branch connectivity graph

VCG construction generates disjoint connected components
some of which are too complex and large for further processing
(like the blue VCG component in Fig. 2a). Hence, these constructs
are disassembled with two goals in mind: (1) to cut the VCG into
smaller connected subsets that could be passed as input for object
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