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1. Introduction

Unexpected failure of machine tool spindle bearings will result
in production loss. Hence, condition monitoring for spindles plays
an important role in improving productivity [1]. Yet there is
currently no universally accepted method for determining the
machine tool spindle condition. The vibrations of the spindle
housing have been analyzed for machine acceptance purposes.
However, resulting diagnostic methods are insufficient since the
measured vibrations are often not clearly related to bearing
damage. Therefore, a robust method to detect bearing faults early
and avoid expensive repairs and machine downtime is needed.

One simple approach for diagnosing the spindle condition is to
compare the root-mean-square (RMS) vibration of the spindle
housing to threshold values [2]. More intricate approaches use the
high-frequency resonance technique [3], envelope spectrum
analysis [4], wavelet transforms [5], neural networks [6],
synchronous sampling [7], auto-correlation analysis [8], modal
decomposition [9], fractals and kurtosis [10].

A significant problem with all methods is that spindle diagnoses
can be corrupted by system dynamics. The rotor excitation is
transformed by system dynamics to yield the vibration data;
vibration is a convolution of spindle dynamics and excitation from
bearings. Resonances can adversely affect spindle condition
metrics [2], and metrics based on vibration data may depend on
spindle speed [11], even though spindle damage is not speed-
dependent. For example, Fig. 1 shows that the long term spindle

condition (LTSC) metric from ISO/TR 17243-1 [2] rates a new
spindle, with only 510 h of operation time and excellent
performance, as a ‘C’ and ‘not suitable for long term operation’.

2. Method for estimating spindle condition

Ideally, only the bearing defect geometry should be used to
estimate the spindle condition. Therefore, measured data must be
used to separate system dynamics from defect geometry. In that
case, a metric could be devised that depends only upon bearing
defects and is hence truly representative of the spindle condition.

Fig. 2 shows a methodology for estimating spindle condition
based on the separation of spindle dynamics and defects.
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A B S T R A C T

Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition.

These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A

new method and spindle condition estimation device (SCED) were developed to acquire data and to

separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying

only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows

that the new approach is robust for diagnosing the machine tool spindle condition.
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Fig. 1. Example of dubious spindle condition metric.

Fig. 2. NIST methodology for estimating spindle condition based on separation of

system dynamics and bearing defect geometry.
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This section outlines the method, while later sections describe its
use.

2.1. Data collection

As seen in Fig. 2, the first step of the new spindle condition
estimation method is to collect data on the spindle housing.
Fig. 3(a) shows a spindle condition estimation device (SCED)
created for this purpose. The device attaches to spindle housings
via a magnetic base. A solenoid with a force sensor is used for
impacts, yielding a frequency response function (FRF) through use
of force and acceleration data. Two accelerometers of varying
sensitivity and range allow for robust collection of vibration data.
As seen in Fig. 3(b)–(d), the device can be used on milling and
turning spindles in various configurations.

The SCED with instrumentation and custom software are used
for data acquisition at a sampling rate of fs = 51 200 Hz. First, ten
impacts are performed with no rotor motion and repeatable
maximum force (�200 N). Then, accelerometer data are collected
for various spindle speeds, from 1200 rpm (20 Hz) up to the
spindle’s maximum speed, e.g., spindle speeds from 1200 rpm to
3000 rpm with a 100 rpm interval. For statistical purposes, ten
trials (Nr = 10) are conducted for each spindle speed.

2.2. Equation of motion

Defects in the spindle bearings affect the rigid-body component
of the rotor motion. For any spindle speed, the motion of the point P
on the rotor (see Fig. 2) can be described in the cycles per
revolution (CPR) domain as r(CPR), where CPR is defined as

CPR ¼ f

f sp

(1)

fsp is the spindle speed in hertz, and f is the frequency (Hz) of
interest. Hence, r(CPR) is a measure of displacement associated
with bearing defects.

The next step of the method is to process the velocity, v(t),
which is derived from the measured acceleration, for use within an
equation of motion (EOM). Note that either velocity or acceleration
can be used to yield the same result. Accordingly, application of
classical mechanics yields the approximate EOM as

jv̄½CPR�j ¼ jG½ f �jjr̄½CPR�j (2)

where an overbar denotes the discrete Fourier transform (DFT) and
G[f] is the dynamics transfer function relating force excitation to
resulting velocity. For sufficiently small frequencies, G[f] is
approximated as

G½ f � ¼ meff v
3 FRF½ f � (3)

where meff is an effective mass based on spindle configuration,
v = 2pf, and FRF[f] is the measured FRF that relates vibration
displacement (derived from measured acceleration) to applied
force. The method uses Eq. (2) to solve for both the spindle defect
function, r̄½CPR�, in the CPR domain and the dynamics transfer
function, G[f], in the frequency domain. The natural logarithm of
each side of Eq. (2) separates the unknowns G[f] and r̄½CPR�:

lnjv̄j ¼ lnjGj þ lnjr̄j (4)

A linear system of equations can be created by utilizing data for
all spindle speeds. To this end, the velocity data should be used in

lnjv̄i;nj ¼ lnjG½ f i;n�j þ lnjr̄nj (5)

for the ith spindle speed and the nth CPR value. This process
requires the same CPR values, regardless of spindle speed, achieved
when the record length Ni is approximately

Ni ¼ 2 round
1

2

f s

f sp;i DCPR

  !
(6)

where round(x) rounds x to its nearest integer, fsp,i is the ith spindle
speed, and DCPR is the desired CPR resolution. The resolution DCPR

should be small enough to successfully separate the spindle defect
frequency components, e.g., DCPR = 0.05.

For an M number of spindle speeds and an N number of CPR

values, there are an M � N number of equations according to
Eq. (5). For each CPR value, the velocity, v(t), can now be processed
for use within Eq. (5). To this end, the velocity DFT, v̄r½i; CPRn�, for
the ith spindle speed and rth trial is averaged in a root-mean-
square fashion over the Nr trials as

jv̄i;nj ¼
1

Nr

XNr

r¼1

jv̄r½i; CPRn�j2
" #1=2

(7)

Finally, a P number of unique frequencies, (f1, f2, . . ., fp), are used to
approximate Eq. (5) as

lnjv̄i;nj ¼ lnjG½ f̃i;n�j þ lnjr̄nj (8)

where f̃i;n is the closest value to fi,n within the set of frequencies.
Eq. (8) yields an M � N number of equations that are linear in

the unknowns, ln|Gp| and lnjr̄nj. Because the linear system is
overdetermined, a least-squares solution exists. The variables
related to system dynamics and bearing defect geometry are highly
coupled for robustness. For data collected at twenty spindle speeds
(M = 20), up to 60 values of r̄ relate to one G variable, and one r̄
value is related to up to 20 values of G.

2.3. Least-squares formulation

The next step of the method is to create a constraint equation
and solve for G[f] and r̄½CPR�. A unique least-squares solution
requires at least one constraint. As Eq. (2) reveals, the product of
two unknown functions is the same to within a scaling factor, a,
because ð1=aÞG½ f � � ar̄½CPR� still yields G½ f � � r̄½CPR�. FRF data is
used to create the constraint equation,

XJ

j¼1

ln G j ¼
XJ

j¼1

lnðmeff v
3
j FRF jÞ (9)

in which only the J number of points with an acceptable coefficient
of variation (COV � 0.03) and frequency (100 Hz < f < 200 Hz) are
used. The COV requirement ensures that only robust data is used,
while the frequency requirement ensures that Eq. (3) may be used;
the spindle rotor can be regarded as being fairly rigid for a

Fig. 3. (a) Spindle condition estimation device, being (b) horizontal on a vertical milling

center, (c) upright on a turning center, and (d) upside-down on a turning center.
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