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1. Introduction

The application of microproducts has been increasing in the
past 10 years and the market is demanding industrial technologies
for high-yield production at a reasonable price. Development of the
micromilling process for micro-mould manufacturing is driven by
these demands due to its capability of machining 3D free-form
microstructures from a large variety of materials, including tool
steels up to 62 HRC. The flexibility and efficiency of micro-end
milling processes using carbide tools allow the fabrication of
smaller batches than with other processes. At very high spindle
speeds, which were used here, measurement and monitoring
become critical [1,2]. While tool wear monitoring has been
extensively studied on the macro-scale, very limited work has
been conducted at the micro-scale [1]. Currently, both experi-
mental and commercially available systems, are based on the
measurements of physical phenomena that are correlated with
tool wear and can be exploited as tool wear symptoms. In micro-
machining applications cutting force components and acoustic
emission (AE) are most often used [2–7]. A review of earlier tool
condition monitoring (TCM) developments can be found in [3–7].
The possibility of reliable tool wear evaluation based on one signal
feature (SF) has been questioned because the feature may offer
incomplete or randomly distorted sensory information about the
condition of a cutting tool. Attempts at rectifying these short-
comings have focused primarily on pursuing a multi-sensor fusion
strategy, which can be achieved by various means, such as
statistical methods, auto-regressive modeling, pattern recognition,
expert systems, and others [2,8–10]. Generally, training an
artificial intelligence system requires test cuts to be made, and
thus is only viable for series production situations [8]. Recently, the
neural network (NN) approach has been the most intensively

studied method for the feature fusion [1,6,11,10]. Usually, a single
NN is used in which several SFs are fed into the network as inputs,
while the condition of the tool is the network output. However, the
use of many SFs in a single NN requires extensive experimental
data that are not available if the TCM system is supposed to be
trained during the first tool life and be ready to monitor the tool
during the next ones.

A different approach was presented by Kuo and Cohen [11], who
proposed a TCM system consisting of two modules. The first
module estimates the tool wear from all SFs taken from one sensor
and the cutting parameters, using an NN with single radial-basis
function. The results are then integrated into the final system’s
response in the second module, in which a fuzzy NN is used. In [12]
the efficiency of TCM strategies based on a single NN with several
input signals and on a hierarchical algorithm was analyzed. The
latter proved to be much more efficient, which was attributed to
too inadequate learning data (collected during the first tool life) in
relation to the necessary network size.

Unfortunately, the accuracy of laboratory TCM systems is usually
tested based on experimental data collected at several wear levels
and at cutting conditions different from those used in training, but
during the same tool life. This makes obtaining good prediction
results relatively easy, but it is far from factory-floor practice.

Generally, the reliability and user friendliness are the most
important concerns of those who actually are using some form of
TCM [7,8]. Most laboratory systems presented in the literature are
‘‘manually’’ tuned and cannot work without the author. Thus, it is
obviously vital to minimize the complexity of any future TCM
system so that it can be employed on many different machines for
many different applications and can be used by a machine tool
operator without any knowledge of the complex strategy involved.
Any threshold values determination, signal feature selection and as
well as their integration, should be performed by the system
without any operator intervention, who should only point the end
of the first, training tool life. This paper presents such a strategy
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applied successfully for conventional turning [12], and tested here
in a micromilling application.

2. Experimental setup and measurements results

The experiments were performed at the micro-machining
Laboratory at Mondragón University. Fig. 1 shows the experimental
setup arranged at a high-precision milling machine, equipped with a
50,000 rpm electrospindle and an HSK 25 tool holder. A laser system
was used to measure the tool’s length. The workpiece was a cold-
work tool steel X155CrVMo12-1, 50 HRC clamped on a three-axis
9256C1 mini-dynamometer side-by-side with 8152B221 AE sensor.
Signals from those sensors were acquired at a sampling frequency of
50 kHz. Two-flute uncoated micro-grain WC ball end mills with
400 mm radius and 308 helix angle were used for a side-milling
operation performed on a 458 tilted workpiece surface
20 mm� 20 mm in subsequent cuts with cutting parameters:
cutting speed vc ¼ 68 m=min, feed fz = 0.016 mm/tooth, depth of cut
ap = 0.05 mm, width of cut ae = 0.05 mm. The total wear in the flank
wear VBBmax = 0.11 mm, was used as the tool life criterion, but
chipping was also checked. The test was regularly interrupted to
measure the wear in an optic stereomicroscope.

Four full tool life tests were performed. Fig. 2 presents examples
of tool wear measurements and flank wear curves from those tests.
As Fig. 2 shows, tool lives ranged from T1 = 5.7 min to T4 = 12.2 min.

In laboratory systems, tool wear measures, such like flank wear
(VBB) or crater wear (KT)) are usually used customarily as the tool
condition indicators. However, under factory-floor conditions,
these measures are seldom used. Instead, commercial TCM
systems use a simplified approach in which signal feature value
is compared with the pre-determined (learned) limit, and
exceeding that limit is taken as tool failure. As intermediate
estimations of tool condition, the user must rely on instantaneous
values of the measured signal features. Here, the used-up portion
of the tool life (DT), defined as the ratio of the cutting time as
performed so far (t) to the overall tool life span (T), was used as the
tool condition measure. So tool wear measurements were used
here only to specify the end of tool life—in the case of the first one
for the system training and in the subsequent ones for testing of
the system performance. It can be determined by the operator in
any other way that is deemed to be suitable for the particular case.

3. Signal feature selection

In Fig. 3, examples of signals acquired in single tool pass (cut)
are presented. A pass lasts only some 1.05 s, so there were

hundreds of them in every tool life. Since tool wear is a gradual
process, only ten passes every 50 s of cutting time were taken into
further evaluation as separate operations. Despite the small
material removal rate, the obtained AE signal was strong and
easy to register, as can be seen in Fig. 3. All signal features
described below are included in the strategy of the proposed TCM
system, and they were not chosen for this particular application.

The average value of the diagnostic signal is most often used in
TCM, e.g., the average value of the feed force signal Fxavg. However,
even under constant cutting conditions, it the signals are not
generally constant (see Fig. 3). Therefore, to eliminate the influence
of the typically short, but strong disturbances in the signal at the
beginning and at the end of the cut, the median of this signal
(FxMed) the mode FxMod and the RMS value FxRMS were calculated.
The next SF is the maximum value (Fxmax), which can be higher for
a dull tool than for a sharp one. Analogous signal features were
calculated for the rest of the signals—two other cutting force
components and RMS of AE (e.g., Fyavg, Fzavg, AEavg, and FyMed).
Numerous further SFs were calculated by the system, because it
cannot be determined in advance which ones will appear to be
useful in a particular application. Among many others, there are
variance (e.g., FxVar), 3rd order moment (e.g., FxMom3), and the
average of the absolute difference between subsequent signal
values (e.g., FxSumdY). To avoid initial signal disturbances, analogous
features were calculated for the middle part of the pass (1/3 to 2/3
of the pass), which was designated here with the additional letters
‘‘mid’’ in the index, e.g., Fxavgmid. Another signal feature calculated

Fig. 1. Experimental setup.

Fig. 3. Examples of signals acquired during one tool pass (cut).

Fig. 2. Tool wear measurement example: fresh tool, worn up tool, and tool wear vs.

time in all tests.
Fig. 4. Example of signal features vs. used-up portion of the tool life before (above)

and after (below) removing the offset.
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