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Abstract 
Stability and dynamics of milling at small radial immersion are investigated. Stability charts are predicted by 
the Semi Discretization method. Two types of instability are predicted corresponding to quasiperiodic and 
periodic chatter. The quasiperiodic chatter lobes are open and distributed along the spindle speed axis only, 
while the periodic chatter lobes are closed curves distributed in the plane of spindle speed and depth of cut. 
Experiments confirm the stability predictions, revealing the two principal types of chatter, the bounded peri- 
odic chatter lobes, and some special chatter cases. The recorded tool deflections in these cutting regimes 
are studied. The experiments also show that the modal properties of a slender tool may depend on spindle 
speed. 
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1 INTRODUCTION 
Milling operations with small radial immersion and long 
slender tools are often required in finish machining of parts 
with deep pockets and thin walls. Since such flexible tools 
and parts are very susceptible to chatter vibrations, accu- 
rate manufacturing can be assured only by judicious selec- 
tion of cutting parameters. Prediction of chatter free cutting 
parameters has been intensively investigated over the last 
decades [ I ] .  Recently it has been shown that stability 
properties of milling change significantly at small radial 
immersions where cutting becomes highly intermittent [2]. 
Further analytical, numerical and experimental investiga- 
tions [3][4][5][6] have confirmed that in cases of very small 
immersion milling the true stability boundary differs signifi- 
cantly from the approximate one predicted by the Single 
Frequency Solution (SFS) method [7], which is widely used 
for prediction of chatter-free parameters in milling. The 
main difference is associated with an additional type of in- 
stability which occurs during highly intermittent cutting. This 
instability is called period doubling or flip bifurcation and 
causes periodic chatter vibrations. The other type of insta- 
bility, so far considered as the only one in milling, is called 
Hopf bifurcation and causes quasiperiodic chatter. Since 
there is a set of stability lobes associated to the each type 
of instability, the stability boundary in small immersion mill- 
ing is composed of two sets of lobes located at different 
spindle speeds. 
This paper reports on results of analytical and experimen- 
tal investigations of milling stability at small radial immer- 
sion. Stability boundaries are predicted by the Semi Dis- 
cretization (SD) method [8]. They are indeed composed of 
two sets of stability lobes, respectively corresponding to 
the quasi-periodic and periodic chatter. However, in con- 
trast to the quasiperiodic chatter lobes that are open and 
distributed along the spindle speed axis, the periodic chat- 
ter lobes are shown to be closed curves distributed in the 
plane of spindle speed and depth of cut. The stability pre- 
dictions are confirmed by experiments that reveal the two 
principal types of chatter and some special chatter cases, 
and also indicate boundedness of periodic chatter lobes. 
Tool deflections recorded during the observed motion 
types are studied in detail. The experiments also show that 

modal properties of a long and slender tool may depend on 
spindle speed. 

2 MATHEMATICAL MODEL OF 2-DOF END MILLING 
Consider a 2-dof milling operation sketched in Figure 1. 

Figure 1: Sketch of 2-dof end milling. 
A cutter with N equally spaced teeth rotates at a constant 
angular velocity 0. The radial immersion angle of the j th 
tooth varies with time as q,(t)=2~(f2t+&l)lN). A compliant 
machine tool structure is excited by the cutting forces at 
the tool tip causing dynamic response of the structure gov- 
erned by the following equation: 

MX(t)  +CX(t)  + K X ( t )  = F(t )  (1 1 
Here X and F denote the displacement and cutting force 
vectors, while M, C, and K denote the mass, damping and 
stiffness matrices. The cutting force components acting on 
thejth tooth are given by: 

(2) 
Fx,j = gj ( t ) ( - f , , j ( t )coscPj( t ) -Fr , j ( t )s incPj ( t ) )  

Fy,j = gj(t)(+Ft, j( t)sincPj(t)-Fr, j( t)coscPj(t)) 

where g,(t) is a unit step function determining whether or 
not thejth tooth is cutting. The tangential and radial cutting 
force components, Ft and F,, are assumed proportional to 



the chip load defined by the product of chip thickness h,(t) 
and depth of cut ap as: 

where Kt and k, respectively denote the specific tangential 
force coefficient and the force ratio. The chip thickness 
consists of a static part due to feed, fzsinq,(f), and a dy- 
namic part due to cutter displacement. The stability of cut- 
ting is influenced only by the dynamic part of chip thickness 
given by: 

where Ax=x(t)-x(t-T) and Ay=y(t)-y(t-T) describe the sur- 
face regeneration, i.e. the difference between the tool posi- 
tions at the present and previous tooth passes. T=2~r/Nfl 
denotes the tooth passing period. 
Summing the contributions of all cutting edges yields the 
total cutting force: 

[ w] = a [ AXAt) Ayx(t)Ayy(t)  Axy(" ] .  [ AY(t,T) Ax(f,  "1 (5) 

where A,,(t) denote the time periodic directional dynamic 
force coefficients (see [7][9] for details). The governing 
equation of motion of a milling cutter therefore reads: 

MX(t)  +CX(t)  + K X ( t )  = apKtA( t ) (X ( t )  - X ( t  - T ) )  

Time dependence of the directional coefficients A(t) com- 
plicates the linear stability analysis of Eq. (6). A possible 
solution to this problem, followed by the Multi Frequency 
Solution (MFS) and SFS methods, is to expand A(t) in a 
Fourier series and retain the terms necessary for the ap- 
proximation. In the MFS method [6][9], several Fourier 
terms are retained, whereas in the SFS method [7] only the 
zeroth order term is kept. The latter approximation is very 
practical, as it allows a closed form expression of the sta- 
bility boundary, but it loses accuracy as the radial immer- 
sion and the number of cutter teeth decrease, leading to 
highly intermittent cutting. Alternatively, stability of Eq. (6) 
can be studied by the recently proposed time domain 
methods, the Temporal Finite Element Analysis [3][10] or 
Semi Discretization [3][8] methods. The latter is used in 
this study and is briefly reviewed below. 

(6) 

3 SEMI DISCRETIZATION METHOD 
The basic idea of the Semi Discretization method is to dis- 
cretize the delayed terms of the delay differential equation 
(DDE) while leaving the current time terms unchanged. 
This way, the DDE is approximated by a series of ordinary 
differential equations (ODEs) for which the solutions are 
known and can be given in closed form [8]. 
The governing equation of milling (Eq. (6)) is a delayed dif- 
ferential equation with the tooth passing period T as delay. 
Using Q(t)=-a,K,A(t) to simplify the notation, Eq. (6) may 
be rewritten as: 

MX(t )+CX( t )+ (K  + Q ( t ) ) X ( t )  =Q( t )X ( t  - T )  (7) 

Discretization is introduced using a time interval [t,, t,+l) 
with t,+l-t,=At. The delay time becomes T=(m+0.5)At, 
where m is an integer determining the coarseness of the 
discretization. The periodic coefficient Q(t)=Q(t+T) and the 
delayed state X(t-T) are approximated by: 

The DDE in Eq. (7) is herewith transformed into a series of 
autonomous second order ODEs with t ,  S t < fl+l: 

Q .  
2 

MX(t )+CX( t )+ (K  + Q j ) X ( t )  =-(Xj-,,,+l +Xi-,,,) (9) 

which can be rewritten as systems of first order ODEs: 

U( t ) = WjU( t ) + Vj (Ui-,,,+1 + u j-,, , )  = WjU( t ) + wj (1 0) 

with u = [X,y,x,y]. Given the initial condition u(t,)=u,, the 
solution of Eq. (10) is: 

Substituting f=f,+l and u(f,+l)=u,+l into this solution yields: 

ui+l = ewiAtuj + (ewiAt - / ] ~ ; l v j ( u j ~ m + l  +uj-,,,) 
(12) 

= P j ~ j  +Rj(~j-,,,+l + ~ j - , , , )  

Eq. (12) can be rewritten as a map: V,+~=Z,V,, with the state 
vector v,=[u,, u,.?, . . . , u,.,] and the coefficient matrix: 

1 Pj 0 0 ... 0 Rj Rj 
I 0 0 ... 0 0 0 

1 0  I 0 ... 0 0 0 I 
Zi = . . . . . . . (1 3) I I 0 0 0 ... 0 I 0 

. . . . . . . . . . . . . . 
0 0 0 ... I 0 0 

The transition matrix over the principal period T is ap- 
proximated by coupling the solutions of m successive in- 
tervals as: 

Finally, stability of the investigated system is determined by 
the eigenvalues of the transition matrix @. The system is 
stable if all eigenvalues of @ are in modulus less than 1. 
Further details on the semi discretization procedure can be 
found in [8]. 
In the case of milling, two possible instabilities can be ob- 
served: 
1. The critical eigenvalue of @ is complex and its 

modulus is greater than 1. This case corresponds to 
the Hopf bifurcation causing the quasiperiodic chatter. 
The critical eigenvalue of @ is real and its value is 
smaller than -1. This case corresponds to the period 
doubling or flip bifurcation which causes the periodic 
chatter. 

These two instabilities are illustrated in Figure 2 by the ei- 
genvalue trajectories in the complex plane accompanied by 
the stability chart with the corresponding depth of cut and 
spindle speed values. In the case of Hopf bifurcation, a 
pair of complex conjugate eigenvalues penetrates the unit 
circle in the complex plane, whereas in the case of flip bi- 
furcation, the unit circle is penetrated by one real and 
negative eigenvalue. More information on bifurcations in 
dynamical systems can be found in [ I  I ] .  

2. 

4 RESULTS 
The cutting tests were conducted on a high speed milling 
center using a cylindrical end mill with a single cutting edge 
(N=l), D=8 mm diameter, 45 degree helix angle, and L=96 
mm overhang (L/D=12). A relatively large overhang was 
used to assure a single dominant vibration mode of the 
tool, whereas a single edged cutter was used to avoid the 
disturbances due to tool runout. The purpose of these two 
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