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1. Introduction

Due to the complexity of helical cutting tools like end mill and
drill, special CAM software is necessary to generate the NC code of
CNC grinding machine. To develop CAM software for helical tools,
it is required to understand the helical groove machining because
the flute profile of helical tool greatly affects the machining
performance, such as cutting force, chip evacuation, tool stiffness
as well as other behaviours. As input parameters, the required
helical flute geometry and the geometry of grinding wheel are
given to generate the wheel location. For precision grinding of
helical tool, the research on this will contribute for understanding
the relation between helical tool and grinding wheel.

In the past decades, the problem of finding a helical groove
profile or a grinding wheel profile has been widely studied using
two main distinct approaches. The first approach [1,2] is based on
graphic reasoning, which slices a grinding wheel into a finite
number of thin disks and then forms the helical groove by
enveloping the trajectory of each thin wheel. This method can be
applied to various wheel profiles but it has high calculation load
and low accuracy. The second approach is based on the tangency
condition; it finds the contact line between the wheel surface and
the helical groove, which has been studied for the machining of a
helical surface of gear teeth [3]. Based on this method the
relationship between a helical flute profile and a wheel profile
were analysed [4–6]. However, these methods cannot be applied to
a wheel profile with a singular point at which the normal vector
cannot be specified. A grinding wheel with such a profile is usually
used by most tool grinding manufacturers. Moreover, even after an
equation of tangency condition is established, at certain setting
conditions this equation is unsolvable. The previous works do not

address the solution to this equation at such conditions and do not
show the calculation of the workpiece profile in such a case.

Using the same concepts of tangency condition and contact line,
this paper is focused on the generation of a helical groove in both
cases of the regular wheel surface or the wheel with sharp edge
involved in a material removal process. A closed form equation of
the contact line between a wheel surface and a helical groove is
determined based on enveloping theory which has been studied
for its industrial applications in areas such as collision detection
and machining simulation [7,8]. Furthermore, the condition at
which the tangency equation cannot be solved is discussed and the
cross-section of the helical surface is determined exactly even
when the tangency equation is unsolvable. Based on the proposed
method, a program for finding the setting conditions to generate an
end mill with the use of design factors like rake angle, web
diameter and margin thickness is developed. The simulation and
experimental results and an illustrated example are compared for
verification.

2. Determination of helical flute cross-section

Assuming that a grinding wheel moves relatively around a
stationary workpiece, a fixed coordinate system OXYZ is attached
to the workpiece as in Fig. 1(a). During the machining process there
always exists a contact line A–B–C–D–E–F (Fig. 1(b)) between the
grinding wheel surface and the generated helical groove. In
general, there are two types of contact lines: The first type (B–C, D–
E) is called a regular contact line, which is generated by the regular
part of the wheel surface and the second type (A–B, C–D, E–F) is
called a singular contact line, which is generated by the edge part of
the wheel surface or by a singular point in the wheel profile.

To simplify the mathematical expressions used in the calcula-
tions, the initial position vector of the wheel centre is set to rG0

¼
½0; Y0; Z0� and the orientation of the wheel axis is set parallel to
plane OXY. To generate a helical flute with a helix angle, b, the
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grinding wheel rotates around the workpiece axis, OX, at angle
w(t) = vt and translates along the X-axis a distance of
X(t) = � Rw(t)/tanb. The wheel axis is oriented such that it makes
an angle a with the workpiece axis which is called the setting angle
as depicted in Fig. 1(a). First, the contact line is calculated at the
initial position of the wheel (t = 0) and then the helical flute profile
is determined by shifting the obtained contact line into plane OYZ,
which is chosen as the cross-section.

2.1. Determination of regular contact line

Based on the above notations and assumptions, the wheel
centre location and the wheel axis can be determined as follows:

rGðtÞ ¼ ½�R’=tanb; Y0cos’ þ Z0sin’; �Y0sin’ þ Z0cos’� (1)

ÎðtÞ ¼ ½�cosa; �sinacos’; sinasin’� (2)

At a point P along the regular contact line (B–C and D–E segment
in Fig. 1(b)), the velocity vector V(P) is perpendicular to the normal
vector of the wheel surface N(P), thereby establishing tangency
condition, N(P) � V(P) = 0. This tangency condition was proven
theoretically [7]. Based on the tangency condition, the regular
contact line is calculated explicitly in this paper.

To calculate the velocity and the normal vector at a point on
wheel surface, a local coordinate system, XLYLZL, located at the
wheel centre, G, is established as:

ẐL ¼ Î ¼ ½�cosa; �sinacos’; sinasin’�

X̂L ¼
İ

jjİjj
¼ ½0; sin’; cos’�

ŶL ¼ ẐL � X̂L ¼ ½�sina; cosacos’; �cosasin’�

8>>><
>>>:

(3)

In the cross-section of the wheel surface normal to the wheel
axis I(t), offset from wheel centre a distance u as depicted in
Fig. 2(a) by taking a point P in that cross-section at angle, u,
measured from the axis XL as in Fig. 2(b). Then the velocity vector of

point P is determined as:

VðPÞ ¼ ṙGðtÞ þ ujjİjjX̂L � jjİjjrðuÞcosuẐL (4)

The normal vector at point P is calculated as:

NðPÞ ¼ cosuX̂L þ sinuŶL � ṙðuÞẐLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ṙ2ðuÞ

q (5)

By applying the tangency condition, V(P) � N(P) = 0 yields:

Acosu þ Bsinu þ C ¼ 0 (6)

where A, B, C are:

A ¼ ṙG
� X̂L þ jjİjjrðuÞṙðuÞ þ jjİjju

B ¼ ṙG
� ŶL

C ¼ �ṙðuÞṙG
� ẐL

8<
: (7)

At the initial position of the wheel (t = w = 0), A, B, C are
calculated as:

A ¼ �Y0 þ sina½rðuÞṙðuÞ þ u�
B ¼ Rsina=tanb þ Z0cosa
C ¼ ṙðuÞð�Rcosa=tanb þ Z0sinaÞ

8<
: (8)

under the following condition:

j � C=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

q
j � 1 (9)

The angle of point P along the regular contact line in the local
coordinate system is determined by solving Eq. (6) as:

u ¼ sin�1ð�C=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

q
Þ � tan�1ðA=BÞ (10)

2.2. Determination of singular contact line

Finding the contact line when singular points of a wheel profile
are involved in the cutting state is not answered explicitly [9]. At a
singular point of a wheel profile, the normal vector of a wheel surface
cannot be specified; therefore, the tangency condition cannot be
satisfied. Kang [5] suggested a method for calculating the points
generated at a singular point by setting the first derivative of the
wheel profile equation to zero in the equation of tangency condition.
This method unintentionally ignores the calculation of the C1D1

segment in Fig. 1(b). Because one point in a regular part of the wheel
generates one point in the workpiece profile whereas one singular
point in the wheel profile generates a segment in workpiece profile.

In this paper, a wheel profile is given with singular points as in
Fig. 2(a). To determine the singular contact line CD, which is
generated by the singular point S at u = u0 (in a similar way to the
points at u = 0 and u = L), which includes two vectors n2C and n3D

normal to surface 2 and 3, respectively, a new normal function is
defined as:

nCD ¼ jn2C þ ð1 � jÞn3D where; 0 � j � 1 (11)

Substitute Eq. (11) into the expression of N(P), and solve the
equation of tangency condition to obtain the singular contact line
(C–D). The obtained angle, uCD, from solving the equation of
tangency condition in this case satisfies:

uCD ¼ juC þ ð1 � jÞuD (12)

where uC and uD obtained from solving Eq. (6) correspond to
normal vectors n2C and n3D.

A closed-form solution of the contact line including the regular
and the singular kinds is determined as:

rP½xP; yP; zP� ¼ rG þ rðuÞðX̂Lcosu þ ŶLsinuÞ þ uẐL

¼ ½�ucosa � rðuÞsinasinu; Y0 � usina

þ rðuÞcosasinu; Z0 � rðuÞcosu� (13)

where u is obtained from Eqs. (10) and (12).
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Fig. 1. Illustration of machine setting and contact line between wheel surface and

machined workpiece.
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Fig. 2. Notation for calculation of contact line.
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