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a b s t r a c t

Plane thermal transpiration of a rarefied gas that flows horizontally in the presence of gravitation is
studied based on the Boltzmann equation. Assuming that the temperature gradient along the walls is
small, the asymptotic analysis for a slow variation in the flow direction is conducted. The semi-analytical
solution that is valid for arbitrary values of the mean free path and the gravitational strength is derived,
and the problem is reduced to solving the spatially one-dimensional Boltzmann equation. This reduced
problem is solved numerically for a hard-sphere molecular gas for small values of gravitational strength,
and the behavior of the flow is studied based on the numerical solution. The effect of weak gravitation is
no longer negligible when the gas is so rarefied that the mean free path is comparable to the maximum
range that the molecules travel along the parabolic path within the channel. This phenomenon has been
observed in the plane Poiseuille flow of a highly rarefied gas, and a similar phenomenon also occurs in
the plane thermal transpiration considered in the present paper.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Plane thermal transpiration is the flow of a rarefied gas between
parallel plane walls induced by the temperature gradient along the
walls. This flow has been studied extensively based on the Boltz-
mann equation [1e14] because it is a typical rarefaction phenom-
enon of a gas and it has a variety of applications such as the
Knudsen compressor [11,15e19] and the separation of a gasmixture
[20]. For small Knudsen numbers (the mean free path divided by
the channel width), the asymptotic theory of the Boltzmann
equation has been established [11,17]. For the transition regime of
the Knudsen number, the direct numerical solution of the linear-
ized Boltzmann equation is available [8,13]. For large Knudsen
numbers, a rigorous mathematical analysis of the solution has
recently been conducted in Ref. [12]. In Ref. [14], applying the
mathematical theorems in Ref. [12], a numerical method for
calculating the solution for arbitrary large Knudsen numbers with
a rigorous error estimate has been developed. Thanks to this
method, the accurate solution of the plane thermal transpiration
for a hard-sphere molecular gas over the entire range of the
Knudsen number is available. In addition, a comprehensive and
accurate experiment for a wide range of the Knudsen number has
been reported in Ref. [21].

Recently, the author has studied the horizontal plane Poiseuille
flow of a rarefied gas in the presence of gravitation with an arbi-
trary strength [22]. The effect of gravitation on the flow is studied
by means of the asymptotic analysis for a slow variation in the flow
direction and the supplemental numerical analysis over a wide
range of the Knudsen number and the gravitational strength. Under
ordinary room conditions on the earth, the effect of gravitation on
the flow is so weak that it is usually negligible in the regime of
intermediate Knudsen numbers. However, the effect becomes
significant as the Knudsen number increases, as demonstrated in
Ref. [22]. The effect of weak gravitation on a highly rarefied gas has
been studied intensively in Ref. [23]. As a result, it was clarified that
although gravitation is arbitrarily weak, its effect on the flow is no
longer negligible when the gas is so rarefied that the mean free
path is comparable to the maximum range that the molecules
travel along the parabolic path within the channel. The physical
explanation of this phenomenon [23] suggests that the plane
thermal transpiration considered in the present paper displays
a similar behavior. For the understanding of the flow, an intensive
study similar to those in Refs. [22,23] is necessary.

In the present paper, we study the horizontal plane thermal
transpiration of a rarefied gas in the presence of gravitation on the
basis of the Boltzmann equation. Extending the analysis of Ref. [22],
the asymptotic analysis for the slow variation in the flow direction
is conducted. From the analysis, we obtain the semi-analytical
solution that is valid for an arbitrary value of the Knudsen
number and the gravitational strength, and the problem is reduced
to solving the spatially one-dimensional Boltzmann equation. Then,
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we conduct the numerical analysis of this reduced problem for
a hard-sphere molecular gas for small values of gravitational
strength. Based on the numerical solution, we discuss the effect of
weak gravitation on the plane thermal transpiration of a rarefied
gas.

The present paper is organized as follows. In Sec. 2, the problem
and the basic equation are stated. In Sec. 3, the asymptotic analysis
is conducted. The numerical result is presented and discussed in
Sec. 4. Finally, the conclusion is given in Sec. 5.

2. Problem and basic equation

2.1. Problem

Let us consider a rarefied gas between two plane parallel walls
placed at rest at X2 ¼ 0 and X2 ¼ L, where Xi is the spatial rectan-
gular coordinate system. The temperature distributions of the two
walls are identical and are given as Tw(X1). The gas is subject to
uniform gravitation (0,�g,0). The magnitude of the gravitational
acceleration g and that of the mean free path are arbitrary. The
conditions at X1 ¼ �N are those which maintain the flow time
independent, e.g., connected to large reservoirs, and the flow in the
region free from the end effects is interested in. We study the time-
independent behavior of the gas under the following assumptions:
(i) the behavior of the gas is governed by the Boltzmann equation,
(ii) the gas molecules undergo diffuse reflection on the walls, and
(iii) the temperature gradient of the walls is so small that the
quantities vary slowly in the X1 direction, i.e.,
ðL=TwÞjdTw=dX1jw 3ðsayÞ � 1 and the solution varies in this
direction in the scale of L/ 3.

2.2. Basic equation

In what follows, we use the dimensionless variables xi ¼ Xi=L,
zi ¼ xi=ð2RT0Þ1=2, and f̂ ¼ f =½r0ð2RT0Þ�3=2� for the spatial coordi-
nates Xi, the molecular velocity xi, and the velocity distribution
function f. Here T0 and r0 are arbitrary reference temperature and
the reference density, respectively (r0 may be chosen as the average
density over the region under consideration). R is the specific gas
constant, i.e., the Boltzmann constant divided by the mass m of
a molecule. For the convenience of the following analysis, we also
use the shrunk coordinate c ¼ 3x1 for x1.

The time-independent Boltzmann equation for the spatially
two-dimensional case is written in the dimensionless form as [11]
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a is a unit vector, dUðaÞ is the solid-angle element in the dir-
ection of a, and dz� ¼ dz1�dz2�dz3�. B̂ ¼ B̂ðja$ðz� � zÞj=jz� � zj;
jz� � zjÞ is a function whose form is determined by the molecular
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�1r0Þ is the mean free path
of the gas in the equilibrium state at rest with the density r0

and dm is the diameter of a molecule. ĝ ¼ gL=ð2RT0Þ is the
dimensionless gravity.

The diffuse reflection boundary condition is written in the
dimensionless form as
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where T̂w ¼ Tw=T0 is the dimensionless temperature distribution
along the walls and

EðzÞ ¼ p�3=2exp
�
�z2

�
(6)

The macroscopic variables of the gas, the density r, the flow
velocity vi, the temperature T, and the pressure p are defined by the
moments of the velocity distribution function. The corresponding
dimensionless variables r̂ ¼ r=r0, v̂i ¼ vi=ð2RT0Þ1=2, T̂ ¼ T=T0, and
p̂ ¼ p=p0, where p0 ¼ Rr0T0, are given as

r̂ ¼
Z

f̂dz (7)
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1
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Z
zi f̂dz (8)
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Z
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p̂ ¼ r̂T̂ (10)

The mass flow rate Mð¼
Z L

0
rv1dX2Þ of the gas through a cross

section per unit time and per unit width in the X3 direction is
expressed in terms of the dimensionless variables as

M

2p0ð2RT0Þ�1=2L
¼
Z1
0

r̂v̂1dx2 (11)

The boundary value problem (1), (4) and (5) is characterized by
the two dimensionless parameters

Kn ¼ [0
L

and ĝ ¼ gL
2RT0

(12)

and the dimensionless temperature distribution T̂w along thewalls.
In the next section, we study this problem for arbitrary values of Kn
and ĝ and the function T̂w.

3. Asymptotic analysis

In the present section, we seek the solution f̂ of the boundary
value problem (1), (4) and (5) that varies moderately in the shrunk
coordinate c. The present analysis is a simple application of that in
Refs. [11,19,20,24,25,26], and a straightforward extension of that in
Ref. [22]. The solution f̂ is sought in a power series in 3:

f̂ ¼ f̂ ð0Þ þ f̂ ð1Þ 3þ/ (13)
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