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a b s t r a c t

The mechanism for the action of time delay in a non-autonomous system with two time scales

is investigated in this paper. The original mathematical model under consideration is a shape

memory alloy oscillator with external forcing. The delayed system is obtained by adding both

linear and nonlinear time delayed position feedbacks to the original system. Typical burst-

ing patterns can be presented, including symmetric fold/supHopf, double-fold/supHopf and

supHopf/supHopf bursting when periodic forcing changes slowly. The time delay is taken as a

variable parameter to investigate its effect on the dynamics of the system such as the stability

and bifurcation. We calculate the conditions of fold bifurcation and Hopf bifurcation as well

as its stability with the aid of the normal form theory and center manifold theorem. Through

bifurcation analysis, we can identify that the occurrence and evolution of bursting dynamic

depends on the magnitude of the delay itself and the strength of time delayed coupling in the

model. Furthermore, we use phase space analysis to explore the associated mechanisms for

the oscillator with multiple coexisting attractors. Numerical simulations are also included to

illustrate the validity of our study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the applications based on shape memory alloys (SMA) which are metallic compounds with the ability to

return to a previous shape or dimension, are receiving increasing attention. The remarkable properties of SMA are attracting

much motivating different applications in several fields of sciences and engineering. The dynamical behavior of shape memory

systems is addressed in different references [1–4]. The great number of shape memory applications in many fields of science

motivates the research work on the nonlinear responses and bifurcations of shape memory oscillators. On the other hand, a

rich class of solutions and bifurcations such as jump phenomena, pitchfork, period doubling, Hopf bifurcations, complete bubble

structures culminating into chaos, can be presented by shape memory systems [5,6].

A typical dimensionless system of the SMA oscillator with external excitation, derived from thermo mechanical mode, can be

expressed by

ẍ + α1ẋ + α2x − α3x3 + α4x5 = k cos (θt), (1)

where α1, 2, 3, 4 are positive parameters, k > 0 is the forcing amplitude, θ > 0 is the forcing frequency. For the ordinary drive

case, i.e., θ = O(1), some important dynamical behaviors such as the primary resonance, the secondary resonance and the free
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resonance of the system, are studied by Piccirillo et al. [7,8]. In recent work, some researchers find especially when the external

excitation frequency is far less than the natural frequency, i.e., 0 < θ � 1, some interesting hysteresis cycles can be easily obtained

by a slowly changing external forcing, passing through the appointed bifurcation values of the unforced system periodically

[9–11]. It is obviously that system (1) has more than two coexisting attractors, which are associated with different parameter

conditions. Such a system will be considered in this paper. Dynamics in this case can behave in periodic oscillation with large-

amplitude oscillations characterized by small amplitude oscillations which is called the bursting phenomena [12–16].

Up to now, the analysis and classification of bursting mechanism are mainly devoted to systems without any delay. However,

delay phenomenon is frequently encountered in many fields of science and engineering [17,18]. Time delayed feedback control

has become an important tool for describing and controlling various nonlinear phenomena in numerous and diverse fields [19–

22]. One of the simplest but widely used time delayed systems is obtained by adding a time delayed position feedback to a

system [23–26]. Thus, we add a time delay (linear or nonlinear) position feedback to Eq. (1), one can obtain the following new

closed-loop delayed system

ẍ + α1ẋ + α2x − α3x3 + α4x5 = k cos (θt) + A1x(t − τ) + A2x3(t − τ), (2)

where τ is a time delay, A1, 2 means gain coefficient about the delay position feedback. If A1, 2 > 0, it means a positive position

feedback, and negative feedback if A1, 2 < 0. For the external frequency deviates far from the frequency of self-excited vibration

in the shape memory alloy oscillator, i.e., two time scales evolve in the vector field, bursting oscillations may occur. We hope to

use the time delay to control different bursting oscillations like a “switch” which either creates or regulates bursting motions by

varying the values of the time delay. Only the results for position feedback are presented in this paper. The velocity feedback will

be discussed in a different paper.

The rest of this paper is organized as follows. In Section 2, an analysis of the bifurcations and dynamics in uncontrolled system

related to Eq. (1) is obtained. The stability analysis and the conditions of Hopf bifurcation including its direction related to Eq. (2)

are studied in Section 3. The dynamics are obtained as a function of the delayed position feedback and the external periodic

forcing. In Section 4, bursting mechanism of symmetric fold/supHopf, double-fold/supHopf and supHopf/supHopf type under

different parameter conditions is discussed. Finally, Section 5 concludes the paper.

2. Bifurcations and hysteresis cycles in uncontrolled system

Our study is started from the uncontrolled system in the absence of time delay while forced excitation changes slowly. Con-

verting system (1) into an autonomous form by considering kcos (θ t) as a control parameter of δ, we obtain the system{
ẋ = y

ẏ = −α1y − α2x + α3x3 − α4x5 + δ.
(3)

Denoting the equilibrium points as (x0, y0), obviously y0 = 0, while x0 is decided by the algebraic equation:

−α2x + α3x3 − α4x5 + δ = 0 (4)

The numbers and bifurcation behaviors of these equilibrium points are determined by the values of the parameters of (4). For

the fixed parameters α1 = 0.1, α3 = 2 and α4 = 2, equilibrium-point curve on double-parameter bifurcation set (δ, α2) related

to Eq. (3) is computed and plotted in Fig. 1, where CP1 = (0.46, 1.41, 0.61), CP3 = (−0.46, 1.41,−0.61) are supercritical cusp

bifurcation points and CP2 = (0, 0, 0) is subcritical cusp bifurcation point [27].

With proper slow forcing, oscillations in Eq. 1 may exhibit hysteresis cycles, which are bursting patterns of point–point type

with two or four jumps. Such dynamics can be easily controlled by modulating the bifurcation parameters. The associated dy-

namical mechanisms of the closed cycles with two or four jumps can be interpreted by parameters bifurcation behaviors related

to Eq. (3). For example, fix α1 = 0.1, α3 = 2, α4 = 2, k = 3, θ = 0.01, and in case of α2 = 0.6, a hysteresis cycle with two jumps

is obtained and shown in Fig. 2(a). Oscillations switch between the two different attractors by fold bifurcations that form such

hysteresis cycle with two jumps. Further increase of the parameter of α2, may lead to transition of the trajectories with two

jumps and then there exists a hysteresis cycle with four jumps. In case of α2 = 0.7, Fig. 2(b) shows the hysteresis cycle jumping

between the attractor on the side and the middle attractor twice. Oscillations switch between the side and the middle attractors

by fold bifurcations twice, which exhibit a transition in two coexisting attractors. Hysteresis cycles with two or four jumps can

be distinguished by the attraction domain corresponding to different coexisting attractors.

3. Bifurcations and stability analysis in controlled system

In this section, the bifurcation behavior of the delayed oscillator of (2) is studied. Similarly, considering kcos (θ t) as a control

parameter of δ, system (2) can be converted into (5),{
ẋ = y

ẏ = −α1y − α2x + α3x3 − α4x5 + δ + A1xτ + A2x3
τ ,

(5)

where xτ = x(t − τ). Denoting the equilibrium points as (x0, y0), obviously y0 = 0, while x0 is decided by the algebraic equation

−α2x + α3x3 − α4x5 + A1x + A2x3 + δ = 0, i.e. − (α2 − A1)x + (α3 + A2)x3 − α4x5 + δ = 0. (6)
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