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a b s t r a c t

Typical semiconductor production is re-entrant and hence requires priority decisions when
parts compete for production capacity at the same machine. A standard way to run such a
factory is to start to plan and to finish according to demand. Often this results in a push
policy where early production steps have priority over later production steps at the begin-
ning of the production line and a pull policy where later steps have priority at the end of
the production line. The point where the policies switch is called the push–pull-point
(PPP). We develop a control scheme based on moving the PPP in a continuum model of
the production flow. We show that this control scheme significantly reduces the mismatch
between demand and production output. The success of the control scheme as a function of
the frequency of control action is analyzed and optimal times between control actions are
determined.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Semiconductor manufacturing is arguable one of the most advanced industrial production processes. Due to its long cycle
times (order of several weeks) and its re-entrant flow topology it poses many challenges for production planning and control.
Especially for commodity chip production when only one type of chip is produced and the product mix cannot be altered,
there are not a lot of ways to influence the production flow beyond the starts policy.

However, re-entrant production where a machine is used to serve several steps in the production schedule of a chip,
allows the use of a dispatch policy to set priorities for all the steps that need to be performed at that machine. A common
dispatch policy in this case is the push policy, also known as first buffer first served policy, which gives priority to earlier
production steps over later production steps. A pull policy, also known as shortest-expected-remaining-process-time policy,
gives priority to later production steps over earlier production steps. Push policies are usually used at the front of a produc-
tion line, whereas pull policies are used at the back of the factory. The step where push policy switches to pull policy is called
the push–pull point (PPP).

In a discrete simulation (DES) model of a semiconductor factory Perdaen et al. [1] study the response of a production line
to demand fluctuations that occur on a much shorter timescale than the cycle time of the factory. They show that the
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mismatch between a fluctuating demand and the factory production can be reduced dramatically relative to many other sta-
tic production scenarios when they couple a heuristics for moving the PPP with a CONWIP starts policy [2].

While DES can be made extremely accurate and their use in practice is widespread, they are extremely time consuming,
both to run and to maintain. In addition they have the usual issues of simulation studies: It is difficult to extrapolate their
generality from the specific parameters that are used and insights into the simulation structure and its dependence on para-
meters is hard to get. Therefore, in recent years aggregate production models have been developed. Initially they were based
on a continuum of product leading to queuing network models [3] which led to the concept of the clearing function, relating
output in a period to workload during the period (see [4] for a state of the art review). More recently models based on trans-
port equations considering production flow as a fluid flow in a continuum in product as well as in production steps have been
discussed. The latter approach leads to partial differential equations (PDEs) describing the flow of the product density and
the associated flow velocity [5].

In [6] a PDE model incorporating a PPP based dispatch policy was presented. The current paper improves this model and
develops a linearized control algorithm. The current model is a feedback control model, tracking the outflux to a given
known demand sequence. We will analyze the PDE model with this linearized control and compare it to fixed PPP schemes
and heuristics similar to the one used in [1] that are based on giving high priority to the lots needed to satisfy the demand in
the next time unit.

The general topic of production planning has a long history and the literature is large and diverse. For the more specific
topic of production planning in semiconductor factories there is a comprehensive recent monograph by Mönch et al. [7]
which presents an overview over real world approaches to dispatching rules, order releases and production planning at dif-
ferent scales from short term order releases to enterprise wide planning. A complete and exhaustive definition of production
planning in its full generality is discussed by Kempf et al. [8]. Armbruster and Uzsoy’s review [9] is closest to our approach
focussing on the interplay between discrete event simulations and aggregate models based on clearing functions and partial
differential equations. Mathematical approaches to control at the aggregate level are discussed in [10,11]. All the previous
approaches dealing with aggregate models were typically controlling the order release or starts policies. To our knowledge,
none considered integrating the dispatch policies into an aggregate model. An optimization approach, corresponding to an
open loop control problem for production planning in aggregate models integrating release and dispatch policies has been
discussed in [12].

2. PDE model

As discussed in [5] and recently summarized in [9] we consider a work-in-progress (wip) density qðx; tÞwhere x describes
the continuum of production stages for a product. Hence qð0; tÞ is the wip density at the beginning production step and
qð1; tÞ the wip density at the final production step. Mass conservation (known for a queuing system as Little’s law) is given
by the continuity equation

@q
@t
ðx; tÞ þ @F

@x
ðx; tÞ ¼ 0; ð1Þ

where Fðx; tÞ ¼ qðx; tÞvðx; tÞ is the associated flux of the production density and vðx; tÞ is the velocity of a part at stage x mov-
ing through the factory at time t. Note that F is also known as the production rate, its units are parts/time. All the modeling
efforts have been targeted to determine the best suited functional form of this flux. In steady state, the flux becomes constant
representing the output of the production unit. The steady state flux is known as the clearing function [3] representing the
relationship between the expected output of a production resource in a given planning period as a function of the workload.
Karmarkar [3] proposed a nonlinear clearing function where output increases as a concave nondecreasing function of W,

reaching an asymptotic maximum. Writing Fðx; tÞ ¼ UðWðtÞÞ; WðtÞ ¼
R 1

0 qðx; tÞdx recovers the clearing function models for
a particular choice of U describing the production rate at time t as a function of the total wip at time t.

Choosing

F ¼ qðx; tÞvðWðtÞÞ ð2Þ

reflects a homogeneous speed through the production line, determined by the total load in the factory. Highly re-entrant
flow with random dispatch policies leads to such behavior since a part at stage x competes for machine capacity with all
the other parts in the factory that are going through the same machine.

In all of these models, the flux or the velocity is explicitly given as a functional of the density. This is a closure assumption:
in the case of the clearing function, F represents the mean production rate for a production line in equilibrium as a function

of the mean wip. In the case of vðWÞ, this represents the mean velocity or 1
mean cycle time

� �
as a function of the mean wip.

Hence Eq. (1) is based on a quasi-steady state assumption restricting its validity to slowly varying influxes.
A typical velocity model that is based on treating the whole factory as a single M/M/1 queue [13] is given by

vðWÞ ¼ l
1þW

; ð3Þ
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