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Abstract

This paper is devoted to asymptotic analysis of equilibrium states of stochastic Richards equation. Both
Itô and Stratonovič interpretations are investigated. Sufficient conditions for asymptotical stability of
the zero solution and the positive equilibrium are established. Numerical simulations are introduced to
illustrate the main results.
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1. Introduction

Logistic model has been studied extensively owing to its theoretical and practical significance. The
generalized logistic equation (Richards model[1, 2]) has the form

dx(t)/dt = rx(t)

(

1 − xθ(t)/K

)

, (1)

where x(t) denotes the population size, r is the growth rate, θ is a positive constant and K > 0 is the
carrying capacity. Obviously, if θ = 1, model(1) is the classical logistic model. For the classical logistic
model, a famous result is that if r < 0 and 0 ≤ x0 < θ

√
K, then lim

t→+∞

x(t) = 0; if r > 0, then lim
t→+∞

x(t) = K

(see e.g. Murray [3]). As a matter of fact, the natural growth of many populations vary with t, for example,
due to the seasonality. Therefore it is reasonable to consider the nonautonomous equation

dx(t)/dt = r(t)x(t)

(

1 − xθ(t)/K

)

, (2)

where r(t) is bounded and continuous function on [0, +∞).
In the real world, population systems are inevitably perturbed by environmental noise (see, e.g. [4]-[12]).

Suppose that the parameter r(t) is stochastically perturbed, with

r(t) → r(t) + σ(t)Ḃ(t),

where Ḃ(t) is white noise and σ2(t) stands for the intensity of the noise. Then this environmentally
perturbed system can be described by the Itô equation

dx(t) = x(t)

(

1 − xθ(t)/K

)[

r(t)dt + σ(t)dB(t)

]

, (3)

and in the Stratonovič sense

dx(t) = r(t)x(t)

(

1 − xθ(t)/K

)

dt + σ(t)x(t)

(

1 − xθ(t)/K

)

◦ dB(t), (4)

where r(t) and σ(t) are bounded and continuous functions on [0, +∞). Several authors have investigated
the corresponding stochastic model ([5]-[11]).
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