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a b s t r a c t

We propose a matrix analysis approach to analytically provide the cumulative distribution
function of the sum of independent Erlang random variables. This reduces to the
characterization of the exponential of the involved generator matrix. We propose a partic-
ular basis of vectors in which we write the generator matrix. We find, in the new basis, a
Jordan–Chevalley decomposition allowing to simplify the calculation of the exponential of
the generator matrix. This is a simpler alternative approach to the existing ones in the
literature.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many situations in service and manufacturing service systems involve the computation of the sum of independent
exponential random variables. Examples include healthcare or production systems with different stages in series, system
reliability with exponentially distributed components lifetimes, and wireless mobile systems with cooperative diversity
schemes. This summation arises also in the transient analysis of Markovian queueing systems, and in general, semi-
Markov processes.

We consider the general case of a hypoexponential distribution defined as the sum of n independent Erlang distributions,
for n 2 N. An Erlang distribution is defined by two parameters, a number of i.i.d. exponential stages and a rate per stage.
Thus, the general hypoexponential distribution is completely defined by the couples of parameters (ki; ki) for i ¼ 1; . . . ;n.
Each couple (ki; ki) defines an Erlang distribution (ki 2 R; ki 2 N), and the rates ki for i ¼ 1; . . . ;n are all distinct. We denote
by Ki ¼ k1 þ k2 þ . . .þ ki for i ¼ 1; . . . ;n and use the convention K0 ¼ k0 ¼ 0. The cumulative distribution function (cdf) of
the hypoexponential distribution is then given by

FðxÞ ¼ 1� aexM1; ð1Þ

for x P 0, where 1 is a column vector of size Kn with ones everywhere, a is a line vector of size Kn and is given by
a ¼ ð1;0; . . . ;0Þ, and eð:Þ denotes the exponential operator. The generator square matrix M of size Kn � Kn is defined by the
coefficients mi;j for i; j 2 f1; . . . ;Kng. We have mj;j ¼ �ki and mj;jþ1 ¼ ki, for Ki�1 þ 1 6 j 6 Ki and i ¼ 1; . . . ;n. All remaining
coefficients of M are zero. We thus may write
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Scheuer [1] provides a formula for Fð:Þ that involves high order derivatives of products of multiple functions. The formula
is however hard to compute numerically. Amari and Misra [2] propose a simplification of Scheuer[1]’s formula using Laplace
transforms and multi-function generalization of the Lebnitz rule for higher order derivatives of products of two functions.
For a particular case with constraints on the values of the kis, Van Khuong and Kong [3] provide the probability distribution
function by inverting its Fourier transform. Using the Wilk’s integral representation of the distribution of the product of inde-
pendent beta random variables, Favaro and Walker [4] provide an alternative formula for Fð�Þ. We also refer the reader for
more details to the review by Nadarajah [5].

In this paper, we propose an alternative simple approach to analytically derive the cdf of Fð�Þ. It is based on a linear
algebraic matrix analysis. The structure of the approach is as follows. We first obtain some particular eigenvectors of the
generator matrix M. These are next used to construct a new basis of vectors. The new basis allows to find the Jordan–
Chevalley decomposition of M into a sum of two commutative linear operators, a diagonal one and a nilpotent one. The
exponential of the matrix M then simply follows by inverting the new basis matrix using the Cayley–Hamilton theorem,
which leads to the cdf of Fð�Þ.

2. The result

Lemma 1 provides the eigenvalues of the matrix M, and one eigenvector associated to each eigenvalue.

Lemma 1. The eigenvalues of M are �ki for i ¼ 1; . . . ;n. An eigenvector of size Kn associated to �ki is the column vector ui, where
the coefficients of ui, denoted by ui;l for 1 6 l 6 Kn, are given by

ui;l ¼ 1 ; l ¼ Ki�1 þ 1;
ui;l ¼ 0 ; l > Ki�1 þ 1;

ui;l ¼ ki�1
ki�1�ki

� �Ki�1�lþ1
; Ki�2 þ 1 6 l 6 Ki�1;

ui;l ¼
Yi�ðmþ1Þ

j¼1

ki�j

ki�j�ki

� �ki�j km
km�ki

� �Km�lþ1
; Km�1 þ 1 6 l 6 Km and 0 6 m < i� 1:

8>>>>>>>><
>>>>>>>>:

Proof. Since M is a triangular matrix, its eigenvalues are its diagonal coefficients, i.e., �ki for i ¼ 0; . . . ;n. For 0 6 i ¼ 0; . . . ; n,
consider the column vector ui defined with its coefficients ui;l (1 6 l 6 Kn), where ui;Ki�1þ1 ¼ 1;ui;l ¼ 0 for

l > Ki�1 þ 1;ui;l ¼ ki�1
ki�1�ki

� �Ki�1�lþ1
for Ki�2 þ 1 6 l 6 Ki�1, and ui;l ¼

Qi�ðmþ1Þ
j¼1

ki�j

ki�j�ki

� �ki�j km
km�ki

� �Km�lþ1
, for Km�1 þ 1 6 l 6 Km and

0 6 m < i� 1. We now define, for 0 6 i ¼ 0; . . . ;n;v i as v i ¼ Mui and we denote its coefficients by v i;l, for 1 6 l 6 Kn.
Consider 1 6 j 6 n. For Kj�1 þ 1 6 l 6 Kj and l – Kn, we have

v i;l ¼ �kjui;l þ kjui;lþ1; ð3Þ

and v i;Kn ¼ �knui;Kn . Since ui;l ¼ 0 and ui;Ki�1þ1 ¼ 1 for l > Ki�1 þ 1, we deduce from Eq. (3) that v i;l ¼ 0 for l > Ki�1 þ 1 and

v i;Ki�1þ1 ¼ �ki. For Ki�2 þ 1 6 l 6 Ki�1 we have ui;l ¼ ki�1
ki�1�ki

� �Ki�1�lþ1
, and for Km�1 þ 1 6 l 6 Km and 0 6 m < i� 1 we have

ui;l ¼
Qi�ðmþ1Þ

j¼1
ki�j

ki�j�ki

� �ki�j km
km�ki

� �Km�lþ1
. Eq. (3) therefore leads to v i;l ¼ �ki�1

ki�1
ki�1�ki

� �Ki�1�lþ1
þ ki�1

ki�1
ki�1�ki

� �Ki�1�ðlþ1Þþ1
¼

�ki
ki�1

ki�1�ki

� �Ki�1�lþ1
, for Ki�2 þ 1 6 l 6 Ki�1. We also obtain v i;l ¼ �ki

Qi�ðmþ1Þ
j¼1

ki�j

ki�j�ki

� �ki�j km
km�ki

� �Km�lþ1
, for Km�1 þ 1 6 l 6 Km and

0 6 m < i� 1. This proves that u is an eigenvector associated to the eigenvalue �ki, for i ¼ 1; . . . ;n, and finishes the proof
of the lemma. h
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