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a b s t r a c t

A new approach, namely global residue harmonic balance method, was used to deal with
large-amplitude oscillations of a nonlinear system with inertia and static nonlinearities.
Unlike other harmonic balance methods, all the former residual errors are introduced in
the present approximation to improve the accuracy. Comparison of the result obtained
using this approach with the exact one and existing results reveals that the high accuracy,
simplicity and efficiency of the proposed procedure. The methods are valid for small as well
as large amplitudes of oscillation, and can be easily extended to other strongly nonlinear
oscillators.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The problems related to large-amplitude oscillations of non-linear engineering structures have received considerable
attention in the past years, where all the references cited in this section are only a small sample of the available literature
on this topic [1–13]. There are several methods for approximating solutions for nonlinear problems with large parameters,
such as harmonic based methods [5,6,13], coupled homotopy–variational formulation [7], variational approach [7,8], ampli-
tude–frequency formulation [7,9], optimal homotopy asymptotic method [10,11] have been used to find approximate
solutions to nonlinear problems.

In this paper, we put forward a novel approximate method, namely the global residue harmonic balance method, to deter-
mine the periodic solutions of free vibrations of cantilever beam. This oscillator is a conservative non-linear large-amplitude
oscillatory system having inertia and static non-linearities. To obtain higher-order analytical approximations, all the residual
errors are considered in the process of every order approximation. Excellent agreement of the approximate frequencies with
the exact ones has been demonstrated and discussed. As can be seen, the results obtained in this paper revel that the method
is very effective and convenient for conservative nonlinear oscillators.

2. Basic idea of global residue harmonic balance approach

For simplicity, we consider systems governed by equations of the form

Uð€u; _u;uÞ ¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0; ð1Þ
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where the over-dot denotes differentiation with respect to time t and A is the amplitude of the oscillations. For convenience,
we assume Eq. (1) is a conservative system (i.e. Uð�€u;� _u;�uÞ ¼ �Uð€u; _u;uÞ).

Eq. (1) describes a system oscillating with an unknown angular frequency x. To determine the unknown frequency, we
introduce a new independent variable s ¼ xt. Then Eq. (1) becomes

Uðx2u00;xu0;uÞ ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0; ð2Þ

where prime denotes the derivative with respect to s.
Considering the periodic solution does exist, it may be better to approximate the solution uðsÞ by such a set of base

functions

fcosðð2k� 1ÞsÞj k ¼ 1;2;3; . . .g: ð3Þ

According to Eq. (3), the initial approximate periodic solution satisfying initial conditions in Eq. (2) is

uð0ÞðsÞ ¼ AcosðsÞ; s ¼ xð0Þt; ð4Þ

where xð0Þ is an unknown constant to be determined later.
To improve the accuracy, we will use the residual of the initial approximation. Substituting Eq. (4) into Eq. (2), we obtain

the initial residual

R0ðsÞ ¼ U x2
ð0Þu

00
ð0Þ;xð0Þu

0
ð0Þ;uð0Þ

� �
: ð5Þ

If R0ðsÞ ¼ 0, then u0ðsÞ happens to be the exact solution. Generally, such case will not arise for nonlinear problems.
Eq. (5) should not contain secular terms of cosðsÞ. Equating its coefficients to zero, we can determine the unknown con-

stant xð0Þ and taking it as the approximation x0. Then, the zero-order approximation u0 is also obtained of the form

u0ðsÞ ¼ AcosðsÞ; s ¼ x0t; ð6Þ

This yields the initial residual

R0ðsÞ ¼ U x2
0u000;x0u00;u0

� �
: ð7Þ

In the following, we consider an iterative method by expanding uðsÞ in a series with respect to the embedding parameter
p of the form

uðsÞ ¼ uðk�1ÞðsÞ þ pukðsÞ; x2 ¼ x2
ðk�1Þ þ pxk; k ¼ 1;2;3; . . . ; ð8Þ

where

uðk�1ÞðsÞ ¼ uðk�2ÞðsÞ þ uk�1ðsÞ; x2
ðk�1Þ ¼ x2

ðk�2Þ þxk�1;

ukðsÞ ¼
Xk

i¼1

a2iþ1;k cosðsÞ � cosðð2iþ 1ÞsÞð Þ; k ¼ 2;3; . . . ;
ð9Þ

where p is the order parameter with values in the interval [0,1], and the kth-order approximate solutions of uðsÞ and x can
be obtained by taking p ¼ 1.

Given the zero-order approximation equation (6) and the residual equation (7), then the first-order approximate periodic
solution and frequency can be written as

uðsÞ ¼ u0ðsÞ þ pu1ðsÞ; x2 ¼ x2
0 þ px1: ð10Þ

Substituting Eq. (6) into Eq. (2) and collecting the coefficients of p, we can get

F1ðs;x1;u1ðsÞÞ , x1
@

@ðx2Þ þ u001
@

@u00
þ u01

@

@u0
þ u1

@

@u

� �
U0; ð11Þ

where @U0=@u denotes that @U=@u is to be evaluated at the zero-order approximation after differentiation etc. It is noted that
Eq. (11) is linear with respect to x1 and u1.

Considering the solution has the form of Eq. (3), we choose

u1ðsÞ ¼ a3;1 cosðsÞ � cosð3sÞð Þ: ð12Þ

Substituting Eq. (12) into Eq. (11), we consider the following equation

F1ðs;x1;u1ðsÞÞ þ R0ðsÞ ¼ 0: ð13Þ

In this way, all the residual errors of the zero-order approximation R0ðsÞ are introduced into Eq. (13) which would improve
the accuracy.

The left hand side of Eq. (13) should not contain the terms cosðsÞ and cosð3sÞ based on Galerkin technique. Letting their
coefficients be zeros, we obtain two linear equations containing two unknowns x1 and a3;1. Then the two unknown
constants can be solved easily. Thus, we get the first-order approximation
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