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a b s t r a c t

In this article, we briefly present a model which consists of a non-homogeneous flexible
beam clamped at its left end to a rigid disk and free at the right end, where another rigid
body is attached. We assume that the disk rotates with a non-uniform angular velocity
while the beam is supposed to rotate with the disk in another plane perpendicular to that
of the disk. Thereafter, we propose a wide class of feedback laws depending on the assump-
tions made on the physical parameters. In each case, we show that whenever the angular
velocity is not exceeding a certain upper bound, the beam vibrations decay exponentially
to zero and the disk rotates with a desired angular velocity.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

This work is concerned with a non-homogeneous elastic beam clamped to the center of a disk and free at the other end
where a body with mass m is attached. Such systems arise in the study of large scale flexible space structures. The disk is
supposed to rotate around the x-axis (see Fig. 1) without friction. In turn, the beam is clamped at the left-end x ¼ 0,
constrained to the x–y plane and all the deflections are assumed to be parallel to the y-axis (see Fig. 1). Consequently, it
follows from [1] that

qðxÞytt þ ðEIðxÞyxxÞxx ¼ qðxÞx2ðtÞy; ðx; tÞ 2 ð0; ‘Þ � ð0;1Þ;
yð0; tÞ ¼ yxð0; tÞ ¼ 0; t > 0;
d
dt xðtÞ Id þ

R ‘
0 qðxÞy2ðx; tÞdx

� �n o
¼ bT ðtÞ; t > 0:

8>><
>>: ð1:1Þ

Here x denotes the position and t represents the time. Moreover, y is the beam’s displacement, x is the angular velocity of
the disk, ‘ is the length of the beam, Id is the disk’s moment of inertia and EIðxÞ; qðxÞ are respectively the flexural rigidity and
the mass per unit length of the beam satisfying

0 < q0 < qðxÞ 2 C4½0; ‘�; 0 < EI0 < EIðxÞ 2 C4½0; ‘�: ð1:2Þ

Furthermore, b is a positive feedback gain and T ðtÞ is the control torque.
Now, we turn to the dynamics of the rigid body attached to the other end of the beam. We have [2]:

yð‘; tÞ ¼ 1ðtÞ; yxð‘; tÞ ¼ #ðtÞ;
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in which 1ðtÞ is the transverse displacement of the centroid of this rigid body, while #ðtÞ gives the direction its normal makes
with the x-axis. Next, we shall neglect, as in [2], the effect of the non-inertial force terms on the object of mass m. Then based
on the Newton–Euler principles, the dynamics of the rigid body of mass m are given by (see [2] for more details)

m€1ðtÞ ¼ myttð‘; tÞ ¼ ðEIðxÞyxxÞxð‘; tÞ þ a1H1ðtÞ; t > 0;

J €#ðtÞ ¼ Jyxttð‘; tÞ ¼ �ðEIðxÞyxxÞð‘; tÞ þ a2H2ðtÞ; t > 0;

(
ð1:3Þ

where J is the moment of inertia of the rigid body attached at the right end of the beam; a1 and a2 are nonnegative constant
feedback gains such that a1 þ a2 – 0 and H1ðtÞ; H2ðtÞ are respectively the control force and the control moment. This,
together with (1.1) and (1.3), allows us to claim that the dynamics of motion of our global system are given by the following
system

qðxÞytt þ ðEIðxÞyxxÞxx ¼ qðxÞx2ðtÞy; ðx; tÞ 2 ð0; ‘Þ � ð0;1Þ;
yð0; tÞ ¼ yxð0; tÞ ¼ 0; t > 0;
myttð‘; tÞ � ðEIðxÞyxxÞxð‘; tÞ ¼ a1H1ðtÞ; t > 0;
Jyxttð‘; tÞ þ ðEIðxÞyxxÞð‘; tÞ ¼ a2H2ðtÞ; t > 0;
d
dt xðtÞ Id þ

R ‘
0 qðxÞy2ðx; tÞdx

� �n o
¼ bT ðtÞ; t > 0:

8>>>>>>><
>>>>>>>:

ð1:4Þ

In this work, we shall provide several feedback control laws and then show the exponential stability of the closed loop
system. To be more precise, the stabilization result will be established in a number of situations depending on the smallness
of the dynamical terms myttð‘; tÞ and Jyxttð‘; tÞ. This extends the results available in literature in two directions. First, our
results generalize those of [3–9] where neither the acceleration term myttð‘; tÞ nor the moment of inertia term Jyxttð‘; tÞ is
present in the system (1.4). Secondly, we are also able to extend the stability results of [10–12,2] and related works to
the case of the presence of a nonlinear coupling term qðxÞx2ðtÞyðx; tÞ. The crucial tool of the proof of our main results,
namely, the exponential stability of the closed loop system is the utilization of the principal theorem in [13] for an uncoupled
system. This strategy, due to Laousy et al. [7], has been adopted in many previous works [3–6].

The paper is organized as follows. In the next section, we shall assume that myttð‘; tÞ is not neglected and accordingly, we
provide two different feedback laws depending on the smallness of the other dynamical term Jyxttð‘; tÞ. It is worth mention-
ing that, in this case, the main difference of the controls resides in the simplicity feature. In fact, the first controls are of
higher order whereas the second ones are known to be simple. Section 3 will be devoted to a thorough analysis of the system
(1.4) without the acceleration term myttð‘; tÞ. Once again, in such a situation, two feedback laws are proposed to stabilize the
system. Finally, this note closes with conclusions and discussions.

2. The acceleration term myttð‘; tÞ is not negligible

Throughout this section, it will be assumed that the dynamical term myttð‘; tÞ cannot be neglected. Then, we will deal with
the stabilization problem of the system (1.4) when the other dynamical term Jyxttð‘; tÞ has a significant value as well as when
it is too small to be taken into consideration.

Fig. 1. Disk-beam-body system.
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