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a b s t r a c t

In this article, we present a new iteration penalty method for incompressible flows based
on the iteration of pressure with a factor of penalty parameter, which was first developed
for Stokes flows by Cheng and Abdul (2006) [14]. The stability and error estimates of
numerical solutions in some norms are derived for this one-level method. Then, combining
the techniques of two-level method and linearization with respect to the nonlinear convec-
tive term, we propose two-level Stokes/Oseen/Newton iteration penalty methods corre-
sponding to three different linearization method, and show the stability and error
estimates of these three methods. Finally, some numerical tests are given to demonstrate
the effect of penalty parameter and the efficiency of the new methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider a two-level iteration penalty method for the incompressible flows which are governed by the
incompressible Navier–Stokes equations

�lDuþ ðu � rÞu�rp ¼ f ; in X;

divu ¼ 0; in X;

u ¼ 0; on @X;

8><
>: ð1:1Þ

where X is a bounded domain in R2 assumed to have a Lipschitz continuous boundary @X. l > 0 represents the viscosity
coefficient. u ¼ ðu1ðxÞ;u2ðxÞÞ denotes the velocity vector, p ¼ pðxÞ the pressure, f ¼ ðf1ðxÞ; f2ðxÞÞ the prescribed body force vec-
tor. The solenoidal condition divu ¼ 0 means that the flows are incompressible.

The development of appropriate mixed finite element approximations is a key component in the search for efficient tech-
niques for solving the problem (1.1) quickly and efficiently. Roughly speaking, there exist two main difficulties. One is the
nonlinear term ðu � rÞu, which can be processed by the linearization methods such as the Newton iteration method [1], or
the two-level method [2–9]. The other is that the velocity and the pressure are coupled by the solenoidal condition. The pop-
ular technique to overcome this difficulty is to relax the solenoidal condition in an appropriate method, resulting in a
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pesudo-compressible system, such as the penalty method and the artificial compressible method [10]. Recently, using the
Taylor–Hood element (P2 � P1 triangular element), Li and An [11] studied two-level penalty finite element methods for
Navier–Stokes equations with nonlinear slip boundary conditions, where the main results can be extended to the problem
(1.1). Denote ðuh

e ; p
h
e Þ the two-level penalty finite element approximation solution to ðu; pÞ 2 ðH3ðXÞ2;H2ðXÞÞ. The error esti-

mate derived in [11] is

jju� uh
e jj1 þ jjp� ph

e jj 6 cðeþ h2 þ H3Þ; ð1:2Þ

where e > 0 is small, h and H are the fine mesh size and coarse mesh size, respectively, and satisfy h < H < 1. c > 0 is inde-
pendent of e;h and H. Thus, it suggests that e depends on h, i.e. e ¼ Oðh2Þ, to yield an accurate approximation. However, the
condition number of the numerical discretization of two-level penalty methods is Oðe�1h�2Þ, which will result in a very ill-
conditioned problem when mesh size h! 0.

In this paper, we combine the iteration penalty method with the two-level method to solve the numerical solution to
(1.1). The iterative penalty method was first introduced by Cheng [12] for the Stokes equations and further used to solve
the pure Neumann problem [13] and the Navier–Stokes equations with nonlinear slip boundary conditions [14]. This itera-
tion penalty method allows us to use a ‘‘not very small’’ penalty parameter e. Our two-level iteration penalty methods can be
described as follows. The first step and the second step are required to solve a small Navier–Stokes equations on the coarse
mesh in terms of the iteration penalty method [12,14]. The third step is required to solve a large linearization problem on the
fine mesh in terms of Stokes iteration, Oseen iteration or Newton iteration, respectively. We prove that these two-level iter-
ation penalty finite element solutions ðueh; pehÞ are of the following error estimate

jju� uehjj1 þ jjp� pehjj 6
cðh2 þ H3 þ eH2 þ ekþ1Þ Stokes=Oseen methods

cðh2 þ H4 þ eH2 þ ekþ2Þ Newton method

(
ð1:3Þ

for any positive integer k. Thus, if we choose e ¼ OðHÞ ¼ Oðh2=3Þ, then (1.3) is of the optimal convergence rate of same order
as the usual Galerkin finite element method. Therefore, compared to the two-level penalty method in [11], our iteration pen-
alty method allows that e is not very small. Moreover, combining with two-level methods, our method we study in this paper
can save a large amount of computational time and is an efficient numerical method for solving the numerical solution to the
problem (1.1).

2. Preliminary

In what follows, we employ the standard notation HlðXÞ (or HlðXÞ2) and jj � jjl; l P 0, for the Sobolev spaces of all functions
having square integrable derivatives up to order l in X and the standard Sobolev norm. When l ¼ 0, we shall write L2ðXÞ (or
L2ðXÞ2) and jj � jj instead of H0ðXÞ (or H0ðXÞ2) and jj � jj0, respectively. Let X be a Banach space. Denote by X0 the dual space of X
and by < �; �>X the dual product between X and X 0. The dual norm jj � jjX0 is defined by jjv jjX0 ¼ supw2X

<v ;w>X
jjwjjX

.
For the mathematical setting, we introduce the following spaces:

V ¼ H1
0ðXÞ

2
; M ¼ L2

0ðXÞ ¼ q 2 L2ðXÞ;
Z

X
qdx ¼ 0

� �
:

The space V is equipped with the norm

jjv jjV ¼
Z

X
jrv j2dx

� �1=2

:

It is well known that jjv jjV is equivalent to jjvjj1. Introduce two bilinear forms

aðu; vÞ ¼ l
Z

X
ru � rvdx; 8 u; v 2 V ;

dðv ; qÞ ¼
Z

X
qdivvdx; 8 v 2 V ; q 2 M;

and a trilinear form

bðu; v;wÞ ¼
Z

X
ðu � rÞv �wdx� 1

2

Z
X

divuv �wdx ¼ 1
2

Z
X
ðu � rÞv �wdx� 1

2

Z
X
ðu � rÞw � vdx:

It is easy to verify that this trilinear form satisfies the following important properties [7]:

bðu; v;wÞ ¼ �bðu;w;vÞ; ð2:1Þ
bðu; v;wÞ 6 NjjujjV jjv jjV jjwjjV ; ð2:2Þ

bðu; v;wÞ 6 N
2
jjujj1=2jjujj1=2

V ðjjv jjV jjwjj
1=2jjwjj1=2

V þ jjwjjV jjv jj
1=2jjv jj1=2

V Þ; ð2:3Þ
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