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a b s t r a c t

We propose a mathematical model to describe the three-dimensional bifurcation geometry
for airway flow simulations. The numerical scheme is explicit, non-iterative, and therefore
stable and efficient. In addition, our model successfully reproduces the characteristic cross-
sectional shape transition (from circular, to flattened elliptical, and then to 8-like shapes)
across a bifurcation as observed in anatomical examinations. Several examples with vari-
ous bifurcation parameters are presented, and these examples demonstrate the capacity
and usefulness of our work in airway flow and transport simulations. The model developed
here may also be useful for blood flow simulations and experimental model design.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Bifurcations are the fundamental structure of the human and animal respiratory system, where an airway splits into two
smaller daughter branches [1,2]. To investigate the complicated flow and transport processes in such bifurcation regions,
numerical simulations have been proven to be useful [3–10]. Thanks to the advanced computational facilities and technol-
ogies, patient-specific calculations are possible with system geometry reconstructed from CT (Computed tomography) or
MRI (magnetic resonance imaging) images [11,6,12,13]. However, information obtained from such simulations is limited
to that particular situation. For general and fundamental studies aiming at a better understanding of the mechanisms and
effects of various parameters on the flow and transport behaviors, an analytical description based on anatomical observa-
tions of these flow passages is more desirable [14]. While the straight segments between two consecutive bifurcations
can be approximately considered as circular tubes, it is not a trivial task to construct a mathematical formulation for the
three-dimensional (3D) bifurcation surface, which connects the parent and daughter branches smoothly.

Efforts in this direction can be traced back to the work by Gradon and Orlicki [15], where three types of rational functions
were employed to describe a sequence of inter-penetrating cylindroids to construct the bifurcation geometry. In addition to
the mathematical complexity, this model is limited to symmetric bifurcations, while asymmetric branching is very common
in pulmonary architecture [2]. The narrow and wide models were then developed by Balashazy and Hofmann [16] to incor-
porate the branching asymmetry, where the carina is modeled as a sharp wedge and the side surfaces of the transition zone
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are not smooth either. In 1995, Heistracher and Hofmann proposed to describe the carinal region with rounding circles to
smoothly connect the two daughter branches [17]. As noticed later by Hegedus et al. [14], the mathematical descriptions
in Ref. [17] were rather sketchy and the two-parameter iteration is numerically sensitive and hard to reproduce. They there-
fore improved this rounding-circle approach with more rigorous formulations for the carinal region, and the problematic
two-parameter iteration was replaced by a one-parameter root-finding process. Even with this improvement, numerical
instability may still be encountered in the carina rounding process, depending on the control geometric parameters and
the transition functions utilized [14]. To avoid the numerical difficulty associated with the rounding-circle approach, which
works in planes parallel to the bifurcation plane (the plane where the axes of the parent and daughter branches lie), Lee et al.
[18] suggested to construct the bifurcation shape in the vertical cross-sections perpendicular to the bifurcation plane. In
place of the iteration or root-finding process in the rounding-circle methods [17,14], a six-order polynomial fitting is neces-
sary to smoothly connect the branch circular arcs across the bifurcation [18]. Such a high-order polynomial fitting is still
iterative and sensitive to initial guess of the coefficients, and could be computationally unstable. A nonlinear equation also
needs to be solved to determine the separating line (called the boundary curve there) location. Although this method might
be attractive for highly asymmetric bifurcations, the symmetric bifurcation from this model has a deep indentation groove
up to the very parental end (see Figs. 8a and 10a in Ref. [18]). This is different from the physiological observations, which
indicate that the transition section consists of two regions: an elliptical region where the circular parent tube gradually
changes to an elliptical shape with flattened top and bottom sides; and the carinal region where two indentations appear
and grow in the middle of the top and bottom surfaces, leading to an 8-like cross-sectional shape and eventually two sep-
arate circles [2,19,17]. A similar problem also exists with the rounding-circle methods due to the non-zero rounding radius
near the parental end.

In this paper, other than constructing the two-dimensional cross-sectional shapes in planes parallel [17,14] or perpendic-
ular [18] to the bifurcation plane, we look the transition region as a 3D surface, and propose an explicit, robust, and non-iter-
ative mathematical description for the bifurcation geometry. No iteration process of root-finding or nonlinear fitting is

Nomenclature

DDL diameter of the straight part of the left branch
DDR diameter of the straight part of the right branch
DP diameter of the parent airway
LDL length of the straight part of the left branch
LDR length of the straight part of the right branch
LP length of the parent airway
RL local tube radius along the left branch
R�L curvature radius of the left branch
RLR local tube radius along the transition arc between two branches
R�LR curvature radius of the transition arc between two branches
RR local tube radius along the right branch
R�R curvature radius of the right branch
rc carinal curvature radius
sL curvilinear coordinate along the left branch axis
sLR curvilinear coordinate along the transition arc between two branches
sR curvilinear coordinate along the right branch axis
wL weight factor to the left branch axis
wLR weight factor to the transition arc between two branches
wR weight factor to the right branch axis
d cut-off value for the surface height calculation at central zone corners
� gradient transition function
�00 spatial gradient of local tube radius at the intersection point of the left branch axis and the transition arc
�01 spatial gradient of local tube radius at the intersection point of the right branch axis and the transition arc
r sigmoidal transition function
UL left branching angle
UR right branching angle
/L left sagittal angle
/c

L left sagittal angle where the branch diameter becomes constant
/�L left sagittal angle where the branch separates from the bifurcation
/LR sagittal angle along the transition arc between two branches
/R right sagittal angle
/c

R right sagittal angle where the branch diameter becomes constant
/�R right sagittal angle where the branch separates from the bifurcation
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