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convergence are proved by the energy method. The convergence order is O(k3/2 +h4).
Two numerical examples are given to support the theoretical results.
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1. Introduction
This paper is devoted to the study of a compact difference method for the partial integro-differential equation

t
u[:uuxx+/ (t—s) uuds, 0<x<1,t>0, (1)
0
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with ¢ > 0 and the boundary conditions

u(0,t)=u(1,t)=0, t =0, (2)
and the initial condition
u(x,0) =up(x), 0<x<1. (3)

Equation similar to (1) can be found in the modeling of physical phenomena involving heat flow in materials with mem-
ory [1,2], phenomena associated with linear viscoelastic mechanics [3,4]. The integral term in (1) represents the viscosity
part of the equation and u > 0in (1) is a Newtonian contribution to the viscosity.

In the twentieth century decade, many considerable works on theoretical analysis [5-8,13-15] have been carried on. Yan
and Fairweather [5] presented orthogonal spline collocation method for some partial integro-differential equations with
smooth integral kernels. Xu [14,15] considered backward Euler method in time direction for a parabolic integro-differential
equation and derived the stability and convergence properties of the time discretizations. Lopez-Marcos [10] studied the
nonlinear partial integro-differential equation which is similar to problem (1)-(3), he used one order full discrete difference
scheme and used a convolution quadrature to treat the integral term. A compact difference scheme is presented by Chen and
Xu [8] for an evolution equation with a weakly singular kernel with the truncation error of order 3/2 in time and order 4
in space, the convergence and stability were obtained. The Crank-Nicolson scheme in time direction for solving problem
(1)-(3) are provided by Tang [6], and the O(kz‘/2 + h2) order conditional convergence is proved. It is well known that the
Crank-Nicolson scheme has O(k?) order accuracy, but due to the lack of smoothness of the integral kernel, the overall numer-
ical procedure in [6] does not achieve second-order convergence. In this article, we give a compact difference scheme for
problem (1)-(3) and proved that the compact difference scheme is stable and convergent in L, norm. The convergence order
is O(k*” + h*).

Throughout the paper, we assume that u, in (3) is such that the problem (1)-(3) has a unique solution in [0, 1] x [0, T].
Furthermore, we suppose that u, and u, are continuous for 0 < x < 1and 0 < t < T, and we assume that there exists a posi-
tive constant Cy such that

[ue(X,6)] < Cot V2, |uge(x,t)] < Cot 2, |uaee (X, )] < Cot /2. (4)

The outline of the paper is organized as follows: a compact finite difference scheme is introduced in Section 2. The anal-
ysis of stability and convergence of the scheme is given in Section 3. The numerical results are presented in Section 4. This
paper ends with a conclusion.

2. The derivation of the compact difference scheme

We introduce a grid wy, = {x|x; = jh,j =0,1,...,J}, t; =nk,n=0,1,... ,Nwithh=1/J,k=1/N and J,N are positive inte-
gers. Moreover, we let t,,1,, = (n+ 1/2)k, ut = u(x}, tn), 0<j<J,0<n<N.

We first introduce the following product trapezoidal method to approximate I(f,t) f (t — s)"2f(s)ds which is intro-
duced by Tang [6]:

n
I(f . ta) = Anf(to) + > _Buf (tap) + O(K?), 1<n<N, (5)
=0
where
1 et 2 b 4\/E 2 oty oty 4\/E
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where $ is a nonnegative constant and is dependent of k and h. i.e., 8 > 0 and 8 = O(1).
The following lemma will be used in the derivation of the compact difference scheme.

Lemma 2.1 ([9,11,12]). Suppose g(x) € C®x;_1,X;.1]. Then
1 1 h*

15 8" (xi-1) + 108" (xi) + 8" (Xi1)] - px [g(%i1) — 28(x;) + g(Xir1)] = mg@ (W), Wi € (Xi1,%i1)- (7)
Lemma 2.2 [6]. Let I(f,t) = [; (t —s) "*f(s)ds, then
I(f, tap12) = [I(f tn) +1(f, tnia)] + O(Pt;3%), n > 1. (8)
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