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a b s t r a c t

In this article, we obtain sufficient conditions for first-order nonlinear neutral differential
equations to have nonoscillatory solutions for different ranges of p1(t) and p2(t, ξ). We
use the Knaster–Tarski fixed point theorem to obtain new sufficient conditions.We give an
example to illustrate the applicability of our results.
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1. Introduction

In this work, we consider the following first-order nonlinear neutral differential equations:
[x(t) − p1(t)x(t − τ)]γ

′

+ Q1(t)G(x(t − σ)) = 0, (1)
[x(t) − p1(t)x(t − τ)]γ

′

+

 d

c
Q2(t, ξ)G(x(t − ξ))dξ = 0 (2)

and 
x(t) −

 b

a
p2(t, ξ)x(t − ξ)dξ

γ
′

+

 d

c
Q2(t, ξ)G(x(t − ξ))dξ = 0, (3)

where γ is a ratio of odd positive integers, τ > 0, σ > 0, d > c > 0, b > a > 0, p1 ∈ C([t0, ∞), R), p2 ∈ C([t0, ∞) ×

[a, b], [0, ∞)),Q1 ∈ C([t0, ∞), [0, ∞)),Q2 ∈ C([t0, ∞) × [c, d], [0, ∞)),G ∈ C(R, R), and xG(x) > 0 for x ≠ 0. We give
some new sufficient conditions for the existence of nonoscillatory solutions of (1)–(3).

In the literature, there are some papers concerning the existence of nonoscillatory solutions of first-order neutral
differential equations. For instance, Zhang et al. [1] considered the first-order linear neutral differential equations of the form

d
dt

[x(t) + P(t)x(t − τ)] + Q1(t)x(t − σ1) − Q2(t)x(t − σ2) = 0 (4)

and they established some sufficient conditions for the existence of nonoscillatory solutions of (4). Later, the existence of
nonoscillatory solutions of first-order and second-order neutral differential equations with distributed deviating arguments

dk

dtk
[x(t) + P(t)x(t − τ)] +

 b

a
q1(t, ξ)x(t − ξ)dξ −

 d

c
q2(t, µ)x(t − µ)dµ = 0, (5)
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was investigated by Candan and Dahiya [2]. Since Eqs. (4) and (5) are linear, they used the Banach contraction principle to
prove their results. However, since (1)–(3) are nonlinear equations, we cannot use the Banach contraction principle. These
points make the present article important for the reader studying this field. For some other related articles, we refer the
reader to the papers [3–10] and the references cited therein. For books, we refer the reader to [11–15].

Let m1 = max{τ , σ }. By a solution of (1) we mean a function x ∈ C([t1 − m1, ∞), R) for some t1 > t0 such that
[x(t)− p1(t)x(t − τ)]γ is continuously differentiable on [t1, ∞) and (1) is satisfied for t > t1. Similarly, letm2 = max{τ , d}.
By a solution of (2) we mean a function x ∈ C([t1 − m2, ∞), R) for some t1 > t0 such that [x(t) − p1(t)x(t − τ)]γ is con-
tinuously differentiable on [t1, ∞) and (2) is satisfied for t > t1. Finally, let m3 = max{b, d}. By a solution of (3) we mean
a function x ∈ C([t1 − m3, ∞), R) for some t1 > t0 such that [x(t) −

 b
a p2(t, ξ)x(t − ξ)dξ ]

γ is continuously differentiable
on [t1, ∞) and (3) is satisfied for t > t1.

As is customary, a solution of (1)–(3) is said to be oscillatory if it is neither eventually positive or negative. Otherwise, it
is called nonoscillatory.

The following fixed point theorem will be used in proofs.

Theorem 1 (Knaster–Tarski Fixed Point Theorem [11]). Let X be a partially ordered Banach space with ordering 6. Let M be a
subset of X with the following properties: the infimum of M belongs to M and every nonempty subset of M has a supremum
which belongs to M. Let T : M → M be an increasing mapping, i.e., x 6 y implies Tx 6 Ty. Then T has a fixed point in M.

2. The main results

Theorem 2. Assume that 0 6 p1(t) 6 p < 1,G is nondecreasing and
∞

t0
Q1(s)ds < ∞. (6)

Then (1) has a bounded nonoscillatory solution.
Proof. Let Y be the set of all real-valued bounded continuous functions on [t0, ∞) with the sup norm. We can define a
partial ordering as follows: for given x1, x2 ∈ Y , x1 6 x2 means that x1(t) 6 x2(t) for t > t0. Set

S = {x ∈ Y : C1 6 x(t) 6 C2, t > t0},

where C1 and C2 are positive constants such that

C1 ≤ α < (1 − p)C2.

If x̃1(t) = C1, t > t0, then x̃1 ∈ S and x̃1 = inf S. In addition, if ∅ ⊂ S∗
⊂ S, then

S∗
= {x ∈ Y : λ 6 x(t) 6 µ, C1 6 λ, µ 6 C2, t > t0}.

Let x̃2(t) = µ0 = sup{µ : C1 6 µ 6 C2, t > t0}. Then x̃2 ∈ S and x̃2 = sup S∗. From condition (6) there exists t1 > t0 with

t1 > t0 + max{τ , σ } (7)

sufficiently large that
∞

t
Q1(s)ds ≤

[(1 − p)C2]
γ

− αγ

G(C2)
, t > t1. (8)

For x ∈ S, we define

(Tx)(t) =

p1(t)x(t − τ) +


αγ

+


∞

t
Q1(s)G(x(s − σ))ds

 1
γ

, t > t1

(Tx)(t1), t0 6 t 6 t1.

Thus Tx is a real-valued continuous function on [t0, ∞) for every x ∈ S. For t > t1 and x ∈ S, by making use of (8), we obtain

(Tx)(t) 6 p C2 +


αγ

+ G(C2)


∞

t
Q1(s)ds

 1
γ

6 p C2 +


αγ

+ G(C2)
[(1 − p)C2]

γ
− αγ

G(C2)

 1
γ

6 C2

and

(Tx)(t) > α > C1.
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