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a b s t r a c t

The matrix exponential plays a very important role in many fields of mathematics and
physics. It can be computed by many methods. This work is devoted to the study of some
explicit formulas for computing eA, where A is a special squarematrix. Themain results are
based on the convergent power series of eA. Examples and applications are given.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a linear first-order constant coefficient ordinary differential equation encountered in the study of dynamical
systems and linear systems:

ẋ(t) = Ax(t),
x(0) = x0,

(1)

where x(t) and x0 are n-vectors, and A is an n × nmatrix of complex constants.
It is well known that the solution to this equation is given by

x(t) = eAtx0, (2)
where eAt denotes the exponential of the matrix At and can be defined by the convergent power series

eAt =

∞−
i=0

(At)i

i!
. (3)

It is therefore important to have an accurate numerical method for computing the matrix exponential function. Many
methods for computing eA were widely studied in [1] and an update [2]. Some improved approaches have been proposed
in [3–5]. But in fact, most of the methods presented in the literature for computing eA always have drawbacks as regards
computational stability and efficiency.

From the theoretical and practical points of view, it is clear that explicit formulas for the matrix exponential are effective
because truncation errors can be avoided. Therefore, more explicit formulas have been developed for thematrix exponential
by many authors. For example, Apostol [6], Thompson [7], and Politi [8] gave explicit formulas for some special cases.
Bensaoud and Mouline [9], and Taher and Rachidi [10] gave explicit formulas for the general cases. Bernstein and So [11]
gave explicit formulas for n = 2 and for some special cases when n > 2. Cheng and Yau [12] gave explicit formulas for
n = 3, 4 and for the general cases.

In this work we are primarily concernedwith n×nmatrices that satisfy some special polynomials. The explicit formulas,
which yield some well-known formulas like those in [11,12] as special cases, are derived for the matrix exponential. The
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scope of our formulas is more extensive than those of the ones that we found in [11]. Compared with the methods in [9,10],
ourmethod for computing eA is simpler andmore straightforward even though it is only valid for some special cases. Finally,
examples and applications are given to illustrate our results.

2. Main results

Denote the set of nonnegative integers by N0, the set of complex numbers by C, and the set of all n× n complex matrices
by Cn×n. The symbols 0n and In will be used to denote the n-by-n zero matrix and the n-by-n identity matrix, respectively.

Bernstein and So [11] gave explicit formulas for A2
= A, A2

= ρIn and A3
= ρA, ρ ∈ C. Now we generalize the results

to the general cases.

Theorem 1. Let A ∈ Cn×n, where Ak+1
= ρAk, ρ ∈ C, k ∈ N0.

(i) If ρ = 0, then eA =
∑k

i=0
Ai

i! .
(ii) If ρ ≠ 0, then

eA =

k−1−
i=0

Ai

i!
+

eρ
−

k−1∑
i=0

ρi

i!

ρk
Ak. (4)

Proof. (i) For ρ = 0, it is immediately obtained that

eA =

∞−
i=0

Ai

i!
=

k−
i=0

Ai

i!

since Ak+1
= 0n, k ∈ N0.

(ii) For Ak+1
= ρAk, ρ ≠ 0, we have

eA =

∞−
i=0

Ai

i!

=

k−1−
i=0

Ai

i!
+


∞−
i=k

ρ i−k

i!


Ak

=

k−1−
i=0

Ai

i!
+

eρ
−

k−1∑
i=0

ρi

i!

ρk
Ak. �

Theorem 2. Let A ∈ Cn×n, where Ak+2
= ρ2Ak, ρ ∈ C, k ∈ N0.

(i) If ρ = 0, then eA =
∑k+1

i=0
Ai

i! .
(ii) If ρ ≠ 0, k = 2l (l ∈ N0), then

eA =

k−1−
i=0

Ai

i!
+

cosh(ρ) −

k/2−1∑
m=0

ρ2m

(2m)!

ρk
Ak

+

sinh(ρ) −

k/2−1∑
m=0

ρ2m+1

(2m+1)!

ρk+1
Ak+1. (5)

(iii) If ρ ≠ 0, k = 2l + 1 (l ∈ N0), then

eA =

k−1−
i=0

Ai

i!
+

sinh(ρ) −

(k−1)/2−1∑
m=0

ρ2m+1

(2m+1)!

ρk
Ak

+

cosh(ρ) −

(k−1)/2∑
m=0

ρ2m

(2m)!

ρk+1
Ak+1. (6)

Proof. (i) Obvious. (ii) For Ak+2
= ρ2Ak, ρ ≠ 0, k = 2l (l ∈ N0), we have

eA =

∞−
i=0

Ai

i!

=

k−1−
i=0

Ai

i!
+


∞−

m=k/2

ρ2m−k

(2m)!


Ak

+


∞−

m=k/2

ρ2m−k

(2m + 1)!


Ak+1
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