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Abstract

In this paper, we study a stress diffusive perturbation of the system describing a viscoelastic flow. We analyse
the boundary layer which arises near the boundary and we observe in particular that there is no boundary layer on
the velocity at the first order.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We study the asymptotic behavior of the solutions of the Oldroyd viscoelastic model when an additive
coefficient of stress diffusion goes to zero. The problem models the flow of a viscoelastic incompressible
fluid. It is considered on an open and regular domainΩ ⊂ R

3 whose boundary is notedΓ . The model
we consider contains an additional stress diffusion term which derives from a microscopic dumbbell
analysis, see [7]. This perturbation is often present for the determination of shear banding flow, see [12].
For the mathematics study of such a model, the presence of a diffusive term can be interesting, see [3].
More generally, if for theoretical, numerical or physical reasons we need to add such a term, we prove
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here that such an addition does not basically influence the solution. In order to highlight the dependence
in this coefficient of stress diffusionε, we write the model in the form:


∂tu

ε + uε · ∇uε −�uε + ∇ pε = div σ ε, div uε = 0,
∂tσ

ε + uε · ∇σ ε + g(σ ε,∇uε)+ σ ε − ε�σ ε = D(uε),
uε(0) = uinit, σ ε(0) = σinit,

(1)

with Neumann boundary conditions for the stress and Dirichlet for the velocity:

∂ σ ε

∂n

∣∣∣∣
Γ

= 0, uε|Γ = 0. (2)

Moreover, the bilinear functiong(σ,∇u) is defined by:

g(σ,∇u) = −W(u).σ + σ.W(u)− a(D(u).σ + σ.D(u)), a ∈ [−1,1],
whereD(u), W(u) respectively represent the deformation and vorticity tensors.

It is known that such a system admits a solution (see [3,5,6]). Our goal is to describe the behavior of
this solution(uε, pε, σ ε) when the viscosityε goes to zero. We show that the solution converges strongly
in L2 (and in fact in any space which the boundary condition∂nσ

ε|Γ = 0 does not appear) towards
(u0, p0, σ0), solution of the system without the stress diffusive term:


∂tu0 + u0 · ∇u0 −�u0 + ∇ p0 = div σ0, div u0 = 0,
∂tσ0 + u0 · ∇σ0 + g(σ0,∇u0)+ σ0 = D(u0),

u0(0) = uinit, σ0(0) = σinit, u0|Γ = 0.
(3)

There again, it is already shown that such a system admits a solution (see [4,8,11]).
To recover the boundary condition Eq. (2) on σ , the solution of Eq. (1) oscillates very quickly close

to the boundary converging toward Eq. (3). Here, we analyse the above-mentioned generated boundary
layer. Previous studies have already been undertaken on such phenomena but in different physical cases,
see [1,9,10] or [13]. It is known in particular that if the boundary is characteristic(uε.n|Γ = 0) then the
size of the generated boundary layer is of order

√
ε.

2. Statements of the results

The main result is the following

Theorem 2.1. Assume uinit ∈ H4(Ω) verifiesdiv (uinit) = 0 and uinit.n|Γ = 0, and σinit ∈ H4(Ω)
then there exists T> 0 and two functions P∈ L∞(0, T; H1(Ω × R

+)) ∩ L2(0, T; H2(Ω × R
+)) and

Σ ∈ L∞(0, T; H2(Ω × R
+)) such that, on[0, T ] × Ω , wehave



uε(t, x) = u0(t, x)+ √
εw(t, x),

pε(t, x) = p0(t, x) + √
εP

(
t, x,

d(x)√
ε

)
+ √

εq(t, x),

σ ε(t, x) = σ0(t, x) + √
ε Σ

(
t, x,

d(x)√
ε

)
+ √

ετ(t, x).

whered(x) represents the distance from x∈ Ω to the boundaryΓ . The functionsw, q andτ verify:

w ∈ L∞(0, T; H1(Ω)) ∩ L2(0, T; H2(Ω)),
q ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1(Ω)),
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