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Abstract

We consider the boundary value problems for nonlinear second-order differential equations of the form

u′′ + a(t) f (u) = 0, 0 < t < 1, u(0) = u(1) = 0.

We give conditions on the ratiof (s)/s at infinity and zero that guarantee the existence of solutions with prescribed
nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs
of our main results are based upon bifurcation techniques.
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1. Introduction

Let
(H0) a ∈ C1[0, 1], a > 0 for 0 ≤ t ≤ 1.

Let λk be thekth eigenvalue of

ϕ′′ + λa(t)ϕ = 0, 0 < t < 1

ϕ(0) = ϕ(1) = 0
(1.1)
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and letϕk be an eigenfunction corresponding toλk . It is well-known that

0 < λ1 < λ2 < · · · < λk < λk+1 < · · · , lim
k→∞ λk = ∞

and thatϕk has exactlyk − 1 zeros in(0, 1) (see, e.g., [1, Chapter VI, Section 27]). Very recently, Naito
and Tanaka [2] considered the nonlinear second-order boundary value problem

u′′(t) + a(t) f (u) = 0, t ∈ (0, 1)

u(0) = u(1) = 0 (1.2)

under the assumptions:
(H1) f ∈ C(R), f (s) > 0 for s > 0, f (−s) = − f (s) for s > 0, and f is locally Lipschitz continuous
on (0,∞);
(H2) There exist f0 and f∞ with 0 ≤ f0, f∞ ≤ ∞, and

f0 = lim|s|→0

f (s)

s
, f∞ = lim|s|→∞

f (s)

s
.

Shooting with initial values and using Sturm’s comparison theorem, they established the following
results.

Theorem A ([2, Theorem 2]). Assume that either f0 < λk < f∞ or f∞ < λk < f0 for some k ∈ N.
Then problem (1.2) has a solution uk which has exactly k − 1 zeros in (0, 1).

Theorem B ([2, Theorem 3]). Assume that either (i) or (ii) holds for some k ∈ N:
(i) f0 < λk < λk+1 < f∞;
(ii) f∞ < λk < λk+1 < f0.

Then problem (1.2) has two solutions uk, uk+1 such that uk and uk+1 have exactly k − 1 and k zeros,
respectively.

In this paper we consider the problem (1.2) under the assumption (H2) and the more general
conditions:
(C0) a ∈ C[0, 1], a > 0 for 0 ≤ t ≤ 1;
(C1) f ∈ C(R) with s f (s) > 0 for s �= 0.

From (C1) we see thatf (0) = 0. Moreover, if 0< f0 < ∞, then f is asymptotically linear at 0. We
give conditions on the ratiof (s)/s at infinity and zero that guarantee the existence of solutions. In par-
ticular, we will show that problem (1.2) hasat least 2k solutions if the ratio f (s)/s crossesk eigenvalues.

The main results of this paper are the following.

Theorem 1. Let (C0), (C1) and (H2) hold, and let f0, f∞ ∈ (0,∞). Assume that either f0 < λk < f∞
or f∞ < λk < f0 for some k ∈ N. Then problem (1.2) has two solutions u+

k and u−
k , u+

k has exactly
k − 1 zeros in (0, 1) and is positive near t = 0, and u−

k has exactly k − 1 zeros in (0, 1) and is negative
near t = 0.

Theorem 2. Let (C0), (C1) and (H2) hold, and let f0, f∞ ∈ (0,∞). Assume that either (i) or (ii) holds
for some k ∈ N and j ∈ {0} ∪ N:
(i) f0 < λk < · · · < λk+ j < f∞;
(ii) f∞ < λk < · · · < λk+ j < f0.
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