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Abstract

We consider the boundary value problems for nonlinegosid-order differential equations of the form
u” +a(t) f(u) =0, O<t<1, u(0) = u(1) = 0.
We give onditions on the ratid (s)/s at infinity and zero that guarantee théstence of solutions with prescribed
nodal properties. Then we establishgsice and multiplicity results for nodadlsitions to the problem. The proofs

of our main results are based upon bifurcation techniques.
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1. Introduction

Let
(Ho)a e C1[0,1],a>0for0<t < 1.
Let Ak be thekth eigenalue of
" +ra(t)p =0, O<t<1 (1.1)
90 =¢1)=0 '
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and letyx be an eigenfunction correspondingiig It is well-known that

O<t <Ao< " <Ak < Akg1l < -+, lim A = o0

k— o0

and thatpx has exacthk — 1 zeros in(0, 1) (see, e.g.,1, Chapter VI, Section 27]). Very recently, Naito
and Tanakad] considered the nonlinear second-order boundary value problem

u’(t) +a() f(u) =0, te (0,1
u0 =u@ =0 12)

under the assumptions:
(H) f e C(R), f(s) >0fors> 0, f(—s) = —f(s) fors > 0, andf islocally Lipschitz continuous
on (0, co);
(H2) Thee existfg and fo, with 0 < fp, oo < 00, and
. f(s . f(s)

fo= lim —= foo = | —_—.

0 |sl\To s o |s\[>noo s
Shoaing with initial values and using Sturm’s comparison theorem, they established the following
results.

Theorem A ([2, Theorem2]). Assume that either fo < Ak < foo OF foo < Ak < fo for somek € N.
Then problem (1.2) has a solution ug which hasexactly k — 1 zerosin (0, 1).

Theorem B ([2, Theorem 3]). Assumethat either (i) or (ii) holdsfor somek € N:

() fo <Ak < Akg1 < foos
(i) foo < Ak < Ake1 < fo.

Then problem (1.2) has two solutions uk, Uk.1 such that ux and ux41 have exactly k — 1 and k zeros,
respectively.

In this paper v nsider the problem1(2) under the assumption (H2) and the more general
conditions:
(CO)aeC[0,1],a>0for0<t <1;
(C1) f € C(R) with sf(s) > 0fors# 0.

From (C1) we see thatt(0) = 0. Moreover, if 0 < fp < oo, thenf is asynptotically linear at 0. We
give conditions on the ratid (s)/s at infinity and zero that guarantee the existence of solutions. In par-
ticular, we will show that probleml(2) hasat least R solutions if the ratio f (s) /s crosse& eigenvalues.

The main results of this paper are the following.

Theorem 1. Let (C0), (C1) and (H2) hold, and let fg, fso € (0, 00). Assumethat either fg < Ax < foo
or fxs < Ak < fofor somek e N. Then problem (1.2) has two solutions u;” and u, u; has exactly
k — 1 zerosin (0, 1) and is positive near t = 0, and u, hasexactly k — 1 zerosin (0, 1) and is negative
neart = 0.

Theorem 2. Let (C0), (C1) and (H2) hold, and let g, fs € (0, 00). Assumethat either (i) or (ii) holds
forsomek e Nand j € {0} UN:

(i) fo<ik<-- <Akgj < foos
(i) foo <Ak <+ < Akqj < fo.
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