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Abstract

In the present work we define the Bézier variant of the generalized Balazs–Kantorovich operators. The special
cases of our operators reduce to some well known operators. We establish the rate of convergence for functions of
bounded variation for the generalized operators.
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1. Introduction

For a real valued functionf defined on the interval[0,∞), Balazs [1] introduced the Bernstein type
rational functions, which are defined by

Rn( f, x) = 1

(1 + anx)n

n∑
k=0

(n

k

)
(anx)k f

(
k

bn

)
, (1)

wherean andbn are suitably chosen positive numbers independent ofx.
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The weighted estimates and uniform convergence for the casean = nβ−1, bn = nβ, 0 < β ≤ 2/3
were investigated in [2]. Recently Ispir and Atakut [3] introduced the generalization of the Balazs
operators, which are defined by

Ln( f, x) = 1

φn(anx)

∞∑
k=0

φ
(k)
n (0)

k! (anx)k f

(
k

bn

)
, n ∈ N, x ≥ 0, (2)

wherean and bn are suitably chosen positive numbers independent ofx and {φn} is a sequence of
functionsφn : C → C satisfying the following conditions:

(i) φn(n = 1, 2, . . .) is analytic in a domainD containing the diskB = {z ∈ C : |z − b| ≤ b};
(ii) φn(0) = 1(n = 1, 2, . . .);

(iii) for any x ≥ 0, φn(x) > 0 andφ
(k)
n (0) ≥ 0 for anyn = 1, 2, . . . andk = 1, 2, . . .;

(iv) for everyn = 1, 2, . . .,

φ
(v)
n (anx)

nvφn(anx)
= 1 + O

(
1

nan

)
, v = 1, 2, 3, 4

wherean → 0, nan → ∞ asn → ∞.

In [3] the authors have estimated the order of approximation for the operators defined by (2)
and proved a Voronovskaja type asymptotic formula and pointwise convergence in a simultaneous
approximation.

The operators defined by (2) are summation type operators, which are not capable of approximating
integrable functions. To approximate integrable functions on the interval[0,∞), we now define the
Kantorovich variant of the generalized Balazs type operators as

L∗
n( f, x) = nan

∞∑
k=0

pn,k(x)

∫
In,k

f (t)dt, n ∈ N, x ≥ 0, (3)

whereIn,k = [k/nan, (k + 1)/nan], pn,k(x) = φ
(k)
n (0)
k!

(anx)k

φn(anx)
andx ≥ 0.

Remark 1. Some particular cases of the operators are defined as follows:

Case 1. If an = 1 andφn(x) = enx, then weobtain the Szász–Kantorovich operators, which are defined
by

S∗
n( f, x) = ne−nx

∞∑
k=0

(nx)k

k!
∫ (k+1)/n

k/n
f (t)dt, x ∈ [0,∞).

Case 2. If φn(x) = (1 + x)n, then weobtain the Bernstein Balazs–Kantorovich operators, which are
defined by

K ∗
n( f, x) = nan

n∑
k=0

(n

k

)
(anx)k(1 + anx)−n

∫ (k+1)/nan

k/nan

f (t)dt, x ∈ [0,∞).

In computer aided geometric design, Bézier basis functions play an important role. This, along with
the recent work on some Bézier variants of well known operators (see [4,5]), motivated us to study further
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