

Available online at www.sciencedirect.com

Applied Mathematics Letters 18 (2005) 191-198

Applied Mathematics Letters

www.elsevier.com/locate/aml

A new class of Salagean-type harmonic univalent functions

Sibel Yalçin

Uludağ Üniversitesi, Fen Ed. Fak. Matematik, Bölümü 16059, Bursa, Turkey

Received 1 October 2003; received in revised form 1 January 2004; accepted 1 May 2004

Abstract

We define and investigate a new class of Salagean-type harmonic univalent functions. We obtain coefficient conditions, extreme points, distortion bounds, convex combination and radii of convex for the above class of harmonic univalent functions.

© 2004 Elsevier Ltd. All rights reserved.

MSC: 30C45: 30C50: 31A05

Keywords: Harmonic univalent functions; Salagean derivative

1. Introduction

A continuous complex-valued function f = u + iv defined in a simply connected complex domain \mathfrak{D} is said to be harmonic in \mathfrak{D} if both u and v are real harmonic in \mathfrak{D} . In any simply connected domain we can write $f = h + \bar{g}$, where h and g are analytic in \mathfrak{D} . A necessary and sufficient condition for f to be locally univalent and sense preserving in \mathfrak{D} is that $|h'(z)| > |g'(z)|, z \in \mathfrak{D}$.

Denote by S_H the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense preserving in the unit disk $U=\{z:|z|<1\}$ for which $f(0)=f_z(0)-1=0$. Then for $f=h+\bar{g}\in S_H$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \qquad g(z) = \sum_{k=1}^{\infty} b_k z^k, \quad |b_1| < 1.$$
 (1)

E-mail address: skarpuz@uludag.edu.tr.

0893-9659/\$ - see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2004.05.003

In 1984 Clunie and Sheil-Small [2] investigated the class S_H as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on S_H and its subclasses.

The differential operator D^m was introduced by Salagean [5]. For $f = h + \bar{g}$ given by (1), Jahangiri et al. [4] defined the modified Salagean operator of f as

$$D^{m} f(z) = D^{m} h(z) + (-1)^{m} \overline{D^{m} g(z)}$$
(2)

where

$$D^{m}h(z) = z + \sum_{k=2}^{\infty} k^{m} a_{k} z^{k}$$
 and $D^{m}g(z) = \sum_{k=1}^{\infty} k^{m} b_{k} z^{k}$.

For $0 \le \alpha < 1$, $m \in \mathbb{N}$, $n \in \mathbb{N}_0$, m > n and $z \in U$, we let $S_H(m, n; \alpha)$ denote the family of harmonic functions f of the form (1) such that

$$\operatorname{Re}\left\{\frac{D^{m}f(z)}{D^{n}f(z)}\right\} > \alpha \tag{3}$$

where $D^m f$ is defined by (2).

We let the subclass $\bar{S}_H(m, n; \alpha)$ consist of harmonic functions $f_m = h + \bar{g}_m$ in $\bar{S}_H(m, n; \alpha)$ so that h and g_m are of the form

$$h(z) = z - \sum_{k=2}^{\infty} a_k z^k, \qquad g_m(z) = (-1)^{m-1} \sum_{k=1}^{\infty} b_k z^k; \quad a_k, b_k \ge 0.$$
 (4)

The class $\bar{S}_H(m,n;\alpha)$ includes a variety of well-known subclasses of S_H . For example, $\bar{S}_H(1,0;\alpha) \equiv \mathcal{F}(\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are starlike of order α in U, $\bar{S}_H(2,1;\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are convex of order α in U, and $\bar{S}_H(n+1,n;\alpha) \equiv \bar{H}(n,\alpha)$ is the class of Salagean-type harmonic univalent functions.

For the harmonic functions f of the form (1) with $b_1 = 0$, Avc1 and Zlotkiewicz [1] showed that if $\sum_{k=2}^{\infty} k^2(|a_k| + |b_k|) \le 1$ then $f \in HK$, and Silverman [6] proved that the above coefficient condition is also necessary if $f = h + \bar{g}$ has negative coefficients. Later, Silverman and Silvia [7] improved the results of [1,6] to the case b_1 not necessarily zero.

For the harmonic functions f of the form (4) with m=1, Jahangiri [3] showed that $f \in \mathcal{F}(\alpha)$ if and only if $\sum_{k=2}^{\infty} (k-\alpha)|a_k| + \sum_{k=1}^{\infty} (k+\alpha)|b_k| \leq 1-\alpha$ and $f \in \bar{S}_H(2,1;\alpha)$ if and only if $\sum_{k=2}^{\infty} k(k-\alpha)|a_k| + \sum_{k=1}^{\infty} k(k+\alpha)|b_k| \leq 1-\alpha$. In this note, we extend the above results to the families $S_H(m,n;\alpha)$ and $\bar{S}_H(m,n;\alpha)$. We also obtain extreme points, distortion bounds, convolution conditions, and convex combinations for $\bar{S}_H(m,n;\alpha)$.

2. Main results

We begin with a sufficient coefficient condition for functions in $S_H(m, n; \alpha)$.

Theorem 1. Let $f = h + \bar{g}$ be so that h and g are given by (1). Furthermore, let

$$\sum_{k=1}^{\infty} \left(\frac{k^m - \alpha k^n}{1 - \alpha} |a_k| + \frac{k^m - (-1)^{m-n} \alpha k^n}{1 - \alpha} |b_k| \right) \le 2$$
 (5)

Download English Version:

https://daneshyari.com/en/article/10678610

Download Persian Version:

https://daneshyari.com/article/10678610

Daneshyari.com