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a b s t r a c t

There exists a singularity problem in control moment gyros (CMGs). CMG singularities are
classified into two types: hyperbolic and elliptic. Several gimbal steering control methods
have been presented to avoid CMG singularities. Hyperbolic singularities can be avoided by
null motion, but elliptic singularities cannot. The existing steering control methods are
rarely designed by explicitly taking the singularity type into account. In order to effectively
avoid elliptic singularities by perturbing gimbal angles, it is desirable to calculate and record
the boundaries between elliptic and hyperbolic singularities in advance so that the
determined boundaries can be utilized for developing model predictive steering control.
To this end, the boundaries between elliptic and hyperbolic singularities of CMGs are
calculated and represented in the form of fitted curves. Several numerical examples are
presented to determine the perturbation gimbal angles for avoiding elliptic singularities
without using singular value decomposition.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

An advantage of control moment gyro (CMG) systems is
that they can generate large torques compared to reaction
wheels (RWs). There are many single gimbal CMG (SGCMG)
array configurations, such as skew type, roof type, sym-
metric type, and twin type. The pyramid-type CMG system,
as shown in Fig. 1, is a typical configuration for a SGCMG
system. However, SGCMG systems have a singularity pro-
blem. This problem has been studied from various points of
view. The singular surface of a pyramid-type CMG system
was studied in [1].

The singular surfaces of a CMG system are classified into
two types: hyperbolic and elliptic singularities. To overcome
the singularity problem of pyramid-type SGCMGs, a number

of control schemes have been proposed [2–21]. The logic for
singularity avoidance can be generally classified into two
categories: gimbal angle path planning and real-time feedback
control. In the path planning methods, the gimbal angle
trajectories are searched in advance so that the CMG systems
do not encounter any singularities during attitude maneuvers
[4–6]. However, generally speaking, those methods have high
computational cost.

On the other hand, real-time steering logic methods do not
have high computational cost but require singularity avoid-
ance techniques because encountering the singularities is not
predicted in advance. Real-time singularity avoidance meth-
ods for the SGCMGs can be classified into three types:
singularity-robust (SR) inverse steering laws [7–10], singular
direction avoidance (SDA) methods [11], and gradient meth-
ods [7,15,16]. The gradient methods use null motion, which
can change the gimbal angles without generating torque.
Therefore, null motion can be used to avoid CMG singularities.
However, null motion is not perfect because it still cannot
avoid elliptic singularities.
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Because the singular surfaces of the pyramid-type
SGCMG can be obtained in advance, recorded data of
CMG singularities can be used to make both real-time
singularity avoidance methods and CMG angular momen-
tum path planning more effective. Takada et al. [20]
implemented a singularity avoidance method using the
surface cost function as a singularity metric calculated
from the singular surface data at 3-D mesh points, and
they experimentally showed that their proposed method is
effective in real-time singularity avoidance. Sato and
Takahashi [21] recorded a singular surface in the form of
a set of plane surfaces and applied an An algorithm [22] to
the global singularity avoidance path planning of the CMG
angular moment.

Although the above two papers, which are based on
recorded singularity data, succeeded in singularity avoid-
ance, the amount of singularity data is considerably large,
and the recorded data of the singularities are not precise
because recording is limited to the mesh/grid points.
Therefore, a more precise and efficient recording method
is desired. Moreover, if an attitude tracking maneuver is
required, it is desired to use null motion because torque
error is not generated by null motion. However, as men-
tioned above, elliptic singularities cannot be avoided by
null motion; thus, torque error is necessary. Even in such a
case, a small torque error is still desired for precise attitude
tracking maneuvers. In order to compromise between
the necessary torque error and precise attitude tracking,

a more efficient method of avoiding elliptic singularities is
required.

To overcome the above problems, the boundaries
between hyperbolic (passable) and elliptic (impassable)
singularities are calculated and recorded in the form of a
polynomial function of the gimbal angles using curve
fitting techniques. The fitted curves of the boundaries
can be used to detect the type of singularity (hyperbolic/
elliptic) without singular value decomposition (SVD) and
to explicitly determine the gimbal angle perturbation to
avoid elliptic singularities during maneuvers. In other
words, the boundaries recorded in the form of a function
will be able to be used to implement model predictive
control (MPC) for singularity avoidance. To the author's
best knowledge, no previous papers have dealt with the
problem by explicitly determining concrete values of the
gimbal angle perturbations to avoid elliptic singularities.
Furthermore, the amount of recorded singularity data is
discussed and compared with those of Refs. [20] and [21],
and the simplicity of the boundaries expressed in the form
of polynomial functions is demonstrated by several exam-
ples for determining the gimbal angle perturbations to
avoid elliptic singularities.

2. Singularities of pyramid-type SGCMGs

In this paper, a pyramid-type SGCMG (as shown in
Fig. 1) is considered. In a traditional pyramid-type CMG
system, the skew angle β is fixed at β¼ tan �1
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(¼54.731) because for this angle, the momentum envel-
ope, which represents the maximum available angular
momentum of the CMG for attitude maneuvers, becomes
nearly spherical. The total CMG angular momentum vector
for the pyramid mounting of four SGCMGs h is expressed
in the spacecraft reference frame as
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Nomenclature

C Jacobian matrix of the CMG system
C i C with ith column removed
Di detðC iÞ
E; F;G elements of the first fundamental form
h angular momentum vector of the CMGs
H angular momentum magnitude of each CMG

(¼1 Nm s)
Hi angular momentum vector of the ith CMG
J objective function
K Gaussian radius (¼1/κ)
L;M;N elements of the 2nd fundamental form
N matrix consisting of null space basis vectors

M singularity type determinable matrix
Pðu; vÞ fitted curve function
Qiðu; vÞ singular gimbal angles (δs2 or δs4) determined

from ðu; vÞ
S singular surface
us singular vector
u; v independent variables for singular surface

(¼ δs1; δs3)
β skew angle (¼ tan �1

ffiffiffi
2

p
¼ 54:731)

δ gimbal angle vector (¼ ðδ1; δ2; δ3; δ4ÞT )
δi gimbal angle of the ith CMG, rad
δsi singular gimbal angle of the ith CMG
κ Gaussian curvature
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Fig. 1. Pyramid-type CMG.
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