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a b s t r a c t

The woven fabric membrane materials are widely used in space and terrestrial inflatable
reflectors. However the material's anisotropy makes the design analysis more complex.
The deviation from the desired shape, so-called “W-profile error”, influences the precision
of the membrane surface significantly. In this study, a model of an axisymmetric
paraboloid surface using membrane theory is established for the purpose of facilitating
the surface precision optimization. Analytical solutions for displacements of the reflector
are derived. An iteration method of initial reflector profile solution is stated and a finite
element (FE) software employed in the solution is presented. A case study is illustrated to
make a comparison between numerical and theoretical analyses. Finally, the conclusions
are drawn that the analytical method and the FE iterative method for initial profile
solution are feasible and efficient.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Ultra-lightweight inflatable reflectors are widely used
in space and terrestrial applications [1]. To avoid the
material damage introduced by multiple packaging and
deployment, the material folding radius should be suffi-
ciently large. The woven fabric membrane materials
become appropriate solutions for this application. How-
ever, the design analysis becomes more complicated
because of the material's anisotropy [2].

The performance of a reflector is mainly determined by
the geometrical precision of the membrane surface that a
number of researchers have investigated this area. Based
on Hencky's study [3], the deviation from parabolic pro-
files of reflector caused by inflation, namely the so-called
“W-profile error” of an inflated membrane reflector [4],
has a significant impact to the precision of the membrane
surface. The figure error of a reflector fabricated of plane

sheet and then deformed to curved surface has been
studied by Jenkins and Marker [5] using the von Kármán
plate equations. The mechanical analysis of the inflatable
arch has been processed with the Sanders' linear thin-shell
theory by Plaut et al. [6]. The exact and approximate
parabolic shapes of initially curved and flat axisymmetric
reflectors as well as their structural characteristics have
been discussed by Greschik et al. [7–9]. The analytical
approaches with membrane theories [10,11] as well as the
Finite Element Method (FEM) [12] have been employed to
investigate the deformations and stress distributions of
membrane reflectors. The geometric imperfections of a
parabolic antenna have been investigated by Naboulsi [13].
To reduce the “W-profile error” and improve the precision
of membrane surface, a majority of studies have focused
on the active control of the reflector such as optimized
gore/seam cable-actuated shape control [4]. However, few
studies have been done regarding the precision analyses
for the reflectors made of anisotropic fabric membranes.
And few studies have been advanced to optimize the initial
profile for increasing the precision of the membrane
reflector.
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In this paper, for the analyses of inflated reflectors
made of an orthotropic material, in Section 2, the axisym-
metric parabolic surface model based on membrane the-
ory is established. Then in Section 3, the solutions for
displacements of the reflector are derived. An iteration
method of initial profile solution for reflector precision
improvement is stated in Section 4. A finite element
software used in the solution is presented in Section 5.
Comparisons between the numerical and theoretical ana-
lyses are illustrated through a case study in Section 6. The
influences of parameters on the precision of reflectors are
investigated and conclusions are drawn at last.

2. Fundamental reflector model

To facilitate the surface precision analysis and the
optimal design, a thin-shell model of an inflated mem-
brane reflector is presented. The analytical model is a
shallow and axisymmetric parabolic cap structure with
internal inflation pressures and simply supported bound-
ary conditions. The reflector material is an orthotropic
Silver-plated Nylon cloth whose warp fabrics are oriented
along the meridian of the cap.

Since the reflector material is very thin, the bending
stiffness and the torsional stiffness are negligible. The
stiffness of the reflector is mainly from the inflation
introduced in-plane strains, here namely the membrane
stiffness. Therefore in the analysis process derivation the
membrane theory is utilized which ignores the moment
and the torque in the membrane plane. The force equili-
brium equations are [14]:
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where α and β denote the two orthogonal directions in the
mid-plane of a membrane element; A and B denote Lame
parameters along directions α and β respectively; r1 and r2
denote radius of curvature along directions α and β
respectively; N1 and N2 denote tension forces along direc-
tions α and β respectively; N12 denotes the shear force in
the mid-plane; p1, p2 and p3 denote pressures along
directions α, β and normal direction respectively. The
relationship between tension forces and stresses are given
as

N1 ¼ σ1t; N2 ¼ σ2t; N12 ¼ σ12t ð2Þ

where σ1 and σ2 are stresses in the mid-plane of a
membrane element along directions α and β respectively;
σ12 is the shear stress in the mid-plane; t is the thickness of
the membrane element.

The equations of compatibility are [14]
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where u, v and w are displacements along directions α, β
and normal; ε1 and ε2 are strains along directions α and β,
ε12 is shear strain in the mid-plane.

Fig. 1 shows the definition of the coordinate system and
parameters of the reflector model. The piece ABCD in Fig. 1 is
an arbitrary element of the membrane. The point P is the
intersection of the axis z and the radius of the curve BC while
the point O' is the center of the curve AB with the meridian
coordinate φ and the circumferential coordinate θ respec-
tively (where φ¼0 at the direction PO' and θ¼0 at the
direction O'Q). Considering the axisymmetric of displace-
ments and stresses, directions α and β can be replaced by the
orthogonal curvilinear coordinates φ and θ as the principal
coordinates of the element ABCD respectively. The principal
radiuses of the element ABCD are shown as r1and r2 in Fig. 1
while the radius of the plane AO'B is given as r¼r2sinφ.
Therefore, the Lame parameters are namely replaced as
A¼r1 and B¼r¼r2sinφ. The inflation pressure P¼p3 is the
only load taken into consideration.

Eq. (4) can be obtained by substituting aforementioned
equations into Eq. (1) as
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where Nφ and Nθ are tension forces in coordinates φ and θ
respectively shown in Fig. 1; Nφθ is the shear force in the
mid-plane shown in Fig. 1.

Considering the axial symmetry, displacement v and
variables in the direction θ can be ignored. From Gauss–
Codazzi–Mainardi Equation [14], it is given as

∂r
∂φ

¼ ∂ðr2 sin φÞ
∂φ

¼ r1 cos φ ð5Þ

Plug Eq. (5) into Eq. (4) to get
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The equilibrium between the inflation pressure and the
membrane tension along the axis z is given as

Pπr2 ¼Nφ2πr sin φ ð7Þ

Fig. 1. Coordinates and parameters of reflector model.
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