Exact analytic solution for the spin-up maneuver of an axially symmetric spacecraft

Jacopo Ventura ${ }^{\text {a,* }}$, Marcello Romano ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Astronautics, Technische Universität München, 85748 Garching, Germany
${ }^{\mathrm{b}}$ Mechanical and Aerospace Engineering Department, Naval Postgraduate School, 700 Dyer Road, Monterey, CA, USA

A R T I C L E I N F O

Article history:

Received 20 March 2014
Received in revised form
14 July 2014
Accepted 29 July 2014
Available online 13 August 2014

Keywords:

Rigid-body dynamics and kinematics
Spin-up maneuver
Analytic solution

Abstract

The problem of spinning-up an axially symmetric spacecraft subjected to an external torque constant in magnitude and parallel to the symmetry axis is considered. The existing exact analytic solution for an axially symmetric body is applied for the first time to this problem. The proposed solution is valid for any initial conditions of attitude and angular velocity and for any length of time and rotation amplitude. Furthermore, the proposed solution can be numerically evaluated up to any desired level of accuracy. Numerical experiments and comparison with an existing approximated solution and with the integration of the equations of motion are reported in the paper. Finally, a new approximated solution obtained from the exact one is introduced in this paper.

© 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The problem of spinning-up a spacecraft is of high importance for many space missions. In particular, as many axially symmetric spacecraft are spin-stabilized a spinning-up maneuver is needed in order to bring them from an initial condition typically close to rest to the nominal spinning condition. The spacecraft may need spin-down and spin-up maneuvering capabilities also to perform reorientation maneuvers.

The spin-up problem of spacecraft has been previously studied. For the general case of a spin-up maneuver of a spherically symmetric or an axially symmetric spacecraft subjected to constant torques, several approximated analytic solutions were introduced. Longuski [1] proposes a formulation for angular velocity and Euler angles for both symmetric and near symmetric spacecraft, valid for small angular velocity and rotational angles. Longuski [2] also introduces the approximate analytic solution for the

[^0]angular momentum vector for near symmetric rigid spacecraft subjected to a constant spinning torque. This solution is given as a function of the angular velocity and Euler angles introduced in Ref. [1] and it is valid for small angular velocity and rotational angles. Another approximated formulation for the angular velocity and Euler angles of a spinning spacecraft, valid for small angles only, is given by Wie [3]. Ayoubi and Longuski [4,5] introduce approximated solutions for the inertial transverse velocity, inertial displacement and axial velocity of a spinning-up axially symmetric spacecraft, under the assumptions of small Euler angles and linear behavior of the spin rate. Longuski [6] considers the case of a spinning spacecraft with constant spinning rate and subjected to transverse body-fixed torques. The author proposes an approximated solution for the attitude, rotational and translational motions of the spacecraft while assuming small angular excursions of the spin axis with respect to an inertially fixed direction. Other authors analyze the motion of a spinning spacecraft in particular situations. Ayoubi and Longuski $[7,8]$ study the asymptotic behavior of the motion of spinning spacecraft subjected to constant torques in all the three axis of the body frame, introducing

the expressions for angular velocity, Euler angles, angular momentum, transverse and axial velocities, and transverse and axial displacements. Livneh and Wie [9] introduce nondimensional equations of motion for the spin-up maneuver of a generic semirigid body. The dynamics of
an axially symmetric dual-spin spacecraft composed of two rigid bodies is studied by Hall [10]. Ayoubi and Goodarzi [11] formulate the equations of motion for the particular case of spinning spacecraft with sloshing effects. Oh [12] and Parkinson and Lange [13] propose

https://daneshyari.com/en/article/10680796

Download Persian Version:
https://daneshyari.com/article/10680796

Daneshyari.com

[^0]: *Corresponding author. Tel.: +49 8928916016.
 E-mail addresses: jacopo.ventura@tum.de (J. Ventura), mromano@nps.edu (M. Romano).

