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a b s t r a c t

The paper investigates the problem of nonlinear filtering applied to spacecraft navigation.
Differential algebraic (DA) techniques are proposed as a valuable tool to implement the
higher-order numerical and analytic extended Kalman filters. Working in the DA frame-
work allows us to consistently reduce the required computational effort without losing
accuracy. The performance of the proposed filters is assessed on different orbit determi-
nation problems with realistic orbit uncertainties. The case of nonlinear measurements is
also considered. Numerical simulations show the good performance of the filter in case of
both complex dynamics and highly nonlinear measurement problems.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear filtering problem plays an important role
in various space-related applications and especially in
orbit determination and spacecraft navigation problems.
Near future sample and return missions from small bodies,
landing missions to the Moon, Mars and outer planets as
well as interplanetary exploration missions demand navi-
gation systems based on accurate filtering techniques that
are able to perform accurate trajectory estimation in a very
reduced lapse of time.

At the present time the extended Kalman filter [1,2]
(EKF) is mainly used for trajectory estimation. The EKF is
based on the main idea of linearizing the equations of
motion and the measurement equations via first-order
Taylor expansions around the current mean and covar-
iance. In some cases, however, the linear assumption fails
to provide an accurate realization of the local trajectory
motion due to the low frequency of the estimation process
as well as the nature or the limited number of measure-
ments. In such cases, a different method that accounts for
the system nonlinearity must be used. An alternative

approach is the unscented Kalman filter (UKF) [3,4] that
yields superior performance with respect to the EKF in
highly nonlinear situations because it is based on the
unscented transformation, which does not contain any
linearization. Even if the asymptotic complexity of the UKF
algorithm is the same as for the EKF, in practice, the UKF is
often slightly slower than the EKF. In 2007 Park and
Scheeres [5,6] developed two nonlinear filters – the
higher-order numerical extended Kalman filter (HNEKF)
and the higher-order analytic extended Kalman filter
(HAEKF) – by implementing a semi-analytic orbit uncer-
tainty propagation technique, that is by solving for the
higher-order Taylor series terms that describe the localized
nonlinear motion and by analytically mapping the initial
uncertainties. These higher-order filters are more accurate
than the EKF, but the need to derive the so-called higher-
order tensors makes them in many cases – especially for a
sophisticated, high fidelity system model – difficult to use
due to computational complexity. Due to this critical
problem, up to now the HNEKF and the HAEKF have
mainly been applied to the case of linear measurements.
Up to now limited work has been done to automate and
speed up the derivation of the state transition tensors [7,8].

Differential algebraic (DA) techniques are here proposed
as a valuable tool to implement the HNEKF and the HAEKF,
in order to obtain not only a higher-order filter, but also
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a computationally efficient one. Differential algebra supplies
the tools to compute the derivatives of functions within a
computer environment [9–12]. More specifically, by substitut-
ing the classical implementation of real algebra with the
implementation of a new algebra of Taylor polynomials, any
function f of n variables is expanded into its Taylor polynomial
up to an arbitrarily order m. This has a strong impact when
the numerical integration of an ordinary differential equation
(ODE) is performed by means of an arbitrary integration
scheme. Any integration scheme is based on algebraic opera-
tions, involving the evaluation of the ODE right hand side at
several integration points. Therefore, starting from the DA
representation of the initial conditions and carrying out all the
evaluations in the DA framework, the flow of an ODE is
obtained at each step as its Taylor expansion in the initial
conditions. The accuracy of the Taylor expansion can be kept
arbitrarily high by adjusting the expansion order. So, in the
DA-based HNEKF and the DA-based HAEKF presented in this
paper, both the propagation of the mean trajectory and the
measurement function evaluation are carried out in the DA
framework. The obtained solution map not only provides the
pointwise values for the propagated state and measurements,
but also provides the higher-order partials of the solution flow
and of the measurement equation. This eliminates the need to
calculate the higher-order tensors at each time step by solving
a complex system of augmented ODE.

The proposed filters are tested on different orbit
determination problems. First of all, a Sun–Earth halo orbit
around the L1 point is considered to demonstrate the
precise correspondence between our results and those
obtained by Park and Scheeres with the original form of
the HNEKF and HAEKF. Moreover, the case of an Earth
orbiting satellite with realistic orbit uncertainties and
nonlinear measurements is presented. Higher orders can
improve the accuracy of the state determination since they
can extract, from the available nonlinear measurements,
more accurate information about the state of the vehicle
than low order filters. Hence, numerical simulations show
good performance of the filter in case of both complex
dynamics and highly nonlinear measurement problems.

The paper is organized as follows. First an introduction
to differential algebra and some hints on how to obtain
high order expansion of the flow are presented. Then, after
a brief overview about the higher-order extended Kalman
filters, differential algebra is used to improve the perfor-
mance of higher-order filters with respect to the original
theory. Finally, the effectiveness of the method is demon-
strated through numerical examples.

2. Notes on differential algebra

DA techniques, exploited here to obtain mth order Taylor
expansions of the flow of a set of ODE's with respect to initial
condition, were devised to attempt solving analytical pro-
blems through an algebraic approach [10]. Historically, the
treatment of functions in numerics has been based on the
treatment of numbers, and the classical numerical algorithms
are based on the mere evaluation of functions at specific
points. DA techniques rely on the observation that it is
possible to extract more information on a function rather
than its mere values. The basic idea is to bring the treatment

of functions and the operations on them to computer envir-
onment in a similar manner as the treatment of real numbers.
Referring to Fig. 1, consider two real numbers a and b. Their
transformation into the floating point representation, a and b
respectively, is performed to operate on them in a computer
environment. Then, given any operation n in the set of real
numbers, an adjoint operation ⊛ is defined in the set of
floating point (FP) numbers so that the diagram in Fig. 1
commutes. (The diagram commutes approximately in practice
due to truncation errors.) Consequently, transforming the real
numbers a and b into their FP representation and operating
on them in the set of FP numbers returns the same result as
carrying out the operation in the set of real numbers and then
transforming the achieved result in its FP representation. In a
similar way, let us suppose two m differentiable functions f
and g in n variables are given. In the framework of differential
algebra, the computer operates on them using theirmth order
Taylor expansions, F and G respectively. Therefore, the trans-
formation of real numbers in their FP representation is now
substituted by the extraction of the mth order Taylor expan-
sions of f and g. For each operation in the space of m
differentiable functions, an adjoint operation in the space of
Taylor polynomials is defined so that the corresponding
diagram commutes; i.e., extracting the Taylor expansions of f
and g and operating on them in the space of Taylor poly-
nomials (labeled as mDn ) returns the same result as operating
on f and g in the original space and then extracting the Taylor
expansion of the resulting function. The straightforward
implementation of differential algebra in a computer allows
computation of the Taylor coefficients of a function up to a
specified order m, along with the function evaluation, with a
fixed amount of effort. The Taylor coefficients of order n for
sums and products of functions, as well as scalar products
with reals, can be computed from those of summands and
factors; therefore, the set of equivalence classes of functions
can be endowed with well-defined operations, leading to the
so-called truncated power series algebra [13,14]. Similarly to
the algorithms for floating point arithmetic, the algorithms for
functions followed, including methods to perform composi-
tion of functions, to invert them, to solve nonlinear systems
explicitly, and to treat common elementary functions [9,10]. In
addition to these algebraic operations, the DA framework is
endowed with differentiation and integration operators,
therefore finalizing the definition of the DA structure.

2.1. The minimal differential algebra

Consider all ordered pairs ðq0, q1Þ, with q0 and q1 real
numbers. Define addition, scalar multiplication, and vector

Fig. 1. Analogy between the floating point representation of real num-
bers in a computer environment (left figure) and the introduction of the
algebra of Taylor polynomials in the differential algebraic framework
(right figure).

M. Valli et al. / Acta Astronautica 94 (2014) 363–374364



Download English Version:

https://daneshyari.com/en/article/10680845

Download Persian Version:

https://daneshyari.com/article/10680845

Daneshyari.com

https://daneshyari.com/en/article/10680845
https://daneshyari.com/article/10680845
https://daneshyari.com

