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a b s t r a c t

One of the most important problems for performing a good design of the spacecraft

attitude control law is connected to its robustness when some uncertainty parameters

are present on the inertial and/or on the elastic characteristics of a satellite. These

uncertainties are generally intrinsic on the modeling of complex structures and in the

case of large flexible structures they can be also attributed to secondary effects

associated to the elasticity. One of the most interesting issues in modeling large flexible

space structures is associated to the evaluation of the inertia tensor which in general

depends not only on the geometric ‘fixed’ characteristic of the satellite but also on its

elastic displacements which of course in turn modify the ‘shape’ of the satellite. Usually

these terms can be considered of a second order of magnitude if compared with the

ones associated to the rigid part of a structure. However the increasing demand on the

dimension of satellites due to the presence for instance of very large solar arrays

(necessary to generate power) and/or large antennas has the necessity to investigate

their effects on their global dynamic behavior in more details as a consequence. In the

present paper a methodology based on classical Lagrangian approach coupled with a

standard Finite Element tool has been used to derive the full dynamic equations of an

orbiting flexible satellite under the actions of gravity, gravity gradient forces and

attitude control. A particular attention has been paid to the study of the effects of

flexibility on the inertial terms of the spacecraft which, as well known, influence its

attitude dynamic behavior. Furthermore the effects of the attitude control authority and

its robustness to the uncertainties on inertial and elastic parameters has been

investigated and discussed.

& 2012 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The study of Very Large Space Structures, from the
structural point of view, implies the need to use standard
and well-established tools such as commercial Finite
Element Software (MSC.Nastran, MSC Patran, etc.). As a
matter of fact these tools are deputed to perform struc-
tural analyses and generally they are not suitable for the

design of orbital and attitude motion. This is true above
all if we consider that a spacecraft may be represented by
thousands of degrees of freedom. It is not easy to handle
the high number of degrees of freedom from flight
mechanics and attitude dynamics point of view. On the
contrary mathematical models of spacecraft, developed to
design the guidance, navigation and attitude control laws,
are not meant to represent the flexibility effects and the
structural behavior of a complex large structure. It is
worth to note that the flexibility effects of large appen-
dages may in turn influence the attitude motion and may
be influenced themselves, too. In fact the flexible behavior
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of an orbiting spacecraft is influenced not only by the
space environment, such as the space-varying gravity
forces, but also by the orbital and attitude perturbations
and the relevant counteracting control forces. Several
methods and formulations devoted to the modeling of
flexible bodies undergoing large overall motions have
been developed in the last decades [1–3].

Most of these different formulations were aimed (a) to
face one of the main problems concerning the analysis of
spacecraft dynamics namely the reduction of computer
simulation time and (b) to have a good even if simplified
representation of its flexible elements. In general these
formulations are based on a kinematics suitable to repre-
sent flexible displacements via a modal superposition
technique [4–6]. On account of this, it is mandatory to
compute the modal shapes of the structure as better as
possible. Furthermore, since the equations of the elastic
vibrations are defined into a modal domain, it is necessary
to evaluate the eigen-frequencies of the structures and to
select the most significant ones, in terms of the modal
masses and eventually of the modal participation factors,
to represent the overall free motion of the spacecraft [7].
It is also worth to note that sometimes dynamics of
complex structures can be described only with the help
of experimental campaigns necessary to correlate numer-
ical data with the experimental ones [8,9]. This is espe-
cially true when dealing with structural eigenfrequencies
and damping ratios of an orbiting spacecraft. As far as an
orbiting flexible-spacecraft is concerned it is important to
observe that gravity, gravity gradient and the perturba-
tion of the gravitational field interact with the structure
itself in different ways. Gravity influences the motion of
the center of mass whereas the gravity gradient acts on
the motion around the center of mass. Furthermore the
gravity local forces, depending on the local elastic dis-
placements, must be defined in order to correctly identify
the generalised forces acting on the elastic terms that
appear on the equation of motion of a flexible space
structure. Another important aspect relevant to the large
flexible structures is the one associated to the effects of
the elastic displacement on the moment of inertia tensor.
If a body undergoes a large deformation its moment of
inertia tensor cannot be considered constant with respect
to time. For studying correctly the attitude behaviour of a
flexible structure it is necessary to introduce the flex-
ibility effects on the inertia tensor associated to the
rotational motion. Of course, elastic terms also affect the
gravity gradient torque since it depends on the moment of
inertia. The full coupled equations of motion will be
derived and discussed and the robustness of the attitude
control law will be analyzed. Several numerical simula-
tions have been introduced and discussed in the paper. In
Fig. 1 a schematic of all test cases provided in the section
Numerical Simulations has been reported.

2. Kinematics and dynamics of a flexible space structure

This section deals with the description of the kine-
matics used to derive the full equation of motion of a
flexible orbiting satellite [10]. The equations of a flexible
body in a space environment—although well known—are

derived by using a classical Lagrangian formulation which
needs (a) the definition of kinematic parameters; (b) the
definition of the kinetic, elastic and gravitational func-
tionals; (c) the definition of the Lagrangian; and (d) finally
the writing of the equilibrium equations;

2.1. Kinematics

As far as the kinematics is concerned we will use a
classical formulation

XðPÞ ¼X0þT nþ
XN

k ¼ 1

AkðtÞ/kðnÞ

 !
ð1Þ

where the vector X represents the position in an inertial,
Earth-centered, frame of a point P, whose position in the
body-fixed reference frame is given by the vector n; the
body-fixed frame is centered in a properly chosen point of
the considered body which in most cases can be the
center of mass. The /kðnÞ is the set of the first N

eigenmodes of the structure (to be properly chosen),
where N must be prescribed according to the required
accuracy, whereas Ak(t) are their relevant amplitudes. The
position of the body in the inertial reference frame (I0) is
further defined by the position vector X0 of its reference
point, and by the rotation matrix T, describing the rota-
tion from body-axes (I2) to the inertial ones. This rotation
is accomplished into two steps. In the first one we move
from body-axes to orbital reference frame (I1) by means of
the rotation matrix T1. This matrix is written in terms of
rotational motion parameters, such as Euler’s angles
½j,y,c� or quaternions Q . The second step is accomplished
by using a matrix T2, depending on the orbital parameters
(right ascension, inclination and true anomaly).

The rotation T¼ T2T1 has the property

_T ¼ TR ð2Þ

Fig. 1. Schematic of numerical simulations.
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