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In this paper, nonlinear unsteady flows in cascades arising from self-excited blade vibrations are
investigated using a mixed time/frequency domain harmonic balance technique. The time-periodic flow
is computed at several sub-time levels that are equally spaced over a single period. The time derivative
term in the unsteady Navier–Stokes equations is approximated by a pseudo-spectral operator, which
couples solutions at different sub-time levels. Compared to the classical time-accurate approach, the
present technique enjoys an improved computational efficiency. In addition, using complex periodic
boundary conditions, the computational domain can be reduced to a grid spanning only a single blade
in the cascade, which further improves the computational efficiency. With the use of the pseudo-
spectral operator and pseudo-time marching, the problem can be treated as steady state and convergence
acceleration techniques such as local time stepping, implicit residual smoothing and multigrid can be
used. To demonstrate the efficiency and accuracy of the technique, we present results for the Tenth
Standard and the Eleventh Standard Configurations.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Accurate and efficient prediction of unsteady flows in turboma-
chinery is important since such predictions can improve the funda-
mental understanding of complex flow physics and reduce devel-
opment time. In the literature to date, researchers have used three
families of computational methods; the time-linearized method
[10,4], the nonlinear time-accurate method [13,3] and the nonlin-
ear harmonic balance method [14,9,11,5] to investigate unsteady
flow phenomena in turbomachinery. In the time-linearized method
the unsteady disturbances, which are harmonic in time, are as-
sumed to be small compared to the mean flow variables. This
assumption decouples the nonlinear unsteady flow into a nonlin-
ear mean part and a linear small disturbance part. The resulting
time-linearized equations can be solved very efficiently. However,
because of the small disturbance assumption, these methods can-
not model dynamically nonlinear problems, which may be impor-
tant for many flows of interest. Unlike time-linearized methods,
time-accurate methods do not rely on small disturbance and time-
periodicity assumptions thereby allowing one to analyze nonlinear
flow problems in a straight-forward manner albeit at increased
computational cost, which can be on the order of 10 to 100 times
the cost of typical time-linearized solvers.

✩ An earlier version of this paper was presented as Paper No. 5752 at the 47th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (San Diego, CA, 31 Jul.–
3 Aug. 2011).
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In the past decade, the demand for efficient prediction of non-
linear unsteady flows led to the development of nonlinear fre-
quency domain techniques. He and Ning [14] developed a nonlin-
ear harmonic method to analyze unsteady flows in turbomachin-
ery. In their approach they coupled the time-averaged flow with
first-order harmonic disturbances through deterministic stresses.
A more systematic and more generalized harmonic balance method
was proposed by Hall et al. [9,11] for the analysis of nonlin-
ear unsteady flows in cascades. In his approach, Hall [11] devel-
oped a mixed time-domain/frequency-domain technique where he
computed dependent variables of the flowfield at sub-time levels
equally spaced over a single period. The main advantages of the
harmonic balance approach compared to a classical time-accurate
method are its computational efficiency and its ability to model
more accurately certain parts of the unsteady flow problem. For
instance, the treatment of both the far-field and periodic bound-
ary conditions are greatly simplified in the frequency domain.
Complex periodicity conditions allow one to reduce the compu-
tational domain to a single blade passage in each row of a tur-
bomachine, greatly reducing the computational cost. Furthermore,
the use of a pseudo-spectral operator allows the unsteady prob-
lem to be treated as a number of coupled steady-state problems,
which are computed simultaneously. According to our experience,
the computational cost of the harmonic balance technique scales
linearly with the number of sub-time levels for a relatively low
reduced frequency and when the number of harmonics retained
in the model is fewer than ten. Finally, convergence acceleration
techniques originally designed for steady state computation may
also be applied to this unsteady harmonic balance solver. In this
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paper, we use the mixed time-domain/frequency-domain harmonic
balance technique to investigate unsteady flows arising from self-
excited vibrations in turbomachinery and compare numerical so-
lutions to available experimental data as well as computations of
other researchers. Although the nonlinear harmonic balance tech-
nique has been used for various computational fluid dynamic (CFD)
problems in the literature, only a few papers compared results to
experimental data, which is one of the focal points of this paper.

2. Governing equations

To motivate the present method, consider two-dimensional
Reynolds-averaged Navier–Stokes equations, with the Spalart–
Allmaras [21] turbulence model. In strong conservation form, these
equations are given by

d

dt

∫ ∫
A

U dA+
∫
S

[F , G] · n dS =
∫ ∫
A

S dA (1)

where U is the vector of conservation variables, i.e.,

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ
ρu
ρv
ρE
ρν̃

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The last entry ν̃ , is the working variable in the Spalart–Allmaras
turbulence model, from which the eddy viscosity is computed.

The flux vectors F , G and the source term S are given by

F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρu − ρ ḟ

ρu2 + p − τxx − ρu ḟ

ρuv − τxy − ρv ḟ

ρuh − τxh − ρE ḟ

ρuν̃ − τxν − ρν̃ ḟ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

G =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρv − ρ ġ

ρuv − τyx − ρuġ

ρv2 + p − τyy − ρv ġ

ρvh − τyh − ρE ġ

ρvν̃ − τyν − ρν̃ ġ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
0
0
0
St

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where ḟ and ġ are the x and y components of the unsteady grid
motion velocity and τxx and τxy are the shear stresses defined as

τxx = 2

3
(μl + μt)

(
2
∂u

∂x
− ∂v

∂ y

)

τxy = (μl + μt)

(
∂u

∂ y
+ ∂v

∂x

)

where the laminar viscosity μl is determined by Sutherland’s law,
and turbulence viscosity μt is determined by the Spalart–Allmaras
turbulence model [21]. In addition, τxh term in the energy equation
and τxν term in turbulence model equation are given by

τxh = uτxx + vτxy +
(

μl

Prl
+ μt

Prt

)
∂h

∂x

τxν = 3

2
(μl + ρν̃)

∂ν̃

∂x

The remaining components of the shear stresses and terms in en-
ergy and turbulence model equations are defined similarly. For an

ideal gas with a constant specific heat ratio, the pressure is related
to the conserved variables through

p = (γ − 1)ρ

[
E − 1

2

(
u2 + v2)]

Finally, the total enthalpy is defined as

h = ρE + p

ρ

It should be noted that the inviscid flux and source vectors de-
pend on the conservation variables and the Cartesian coordinates.
The viscous fluxes depend on the gradients of the flow velocities,
temperature and the working turbulent variable.

3. Harmonic balance approach

Here, it is assumed that the cascade blades vibrate harmonically
with a frequency ω. The computational grid deforms to conform to
this motion, so the grid also vibrates with a frequency ω about its
mean position. Because the flow is temporally periodic, the flow
variables may be represented as a Fourier series in time with spa-
tially varying coefficients. For example, the conservation variables
may be approximated as a truncated Fourier series given by

U ∗(x, y, ti) = A0(x, y) +
N∑

n=1

[
An(x, y) cos(ωnti)

+ Bn(x, y) sin(ωnti)
]; i = 1–(2N + 1) (2)

where ω is the fundamental excitation frequency, and A0, An and
Bn are the Fourier coefficients of the conservation variables. In
principle, the choice of N depends on the physical problem con-
sidered. For example, a single harmonic is generally sufficient for
linear unsteady flows (such as those arising from low amplitude
vibrations). On the other hand, more harmonics are required for
strongly nonlinear unsteady flows. In such cases, a mode con-
vergence study is usually required to ensure accuracy and deter-
mine an appropriate N . We must also note that in turbomachinery
aeromechanics, it is often important to predict accurately only one
or a very few of the Fourier coefficients of the unsteady flow. For
instance, if one needed to calculate the forced response of a blade
row at a natural frequency near the first harmonic, then it is only
the first harmonic of the unsteady pressure (or more precisely the
generalized force) that is important. In such cases where the lower
harmonic content is of interest only a few harmonics are adequate
to accurately predict those lower harmonics [6].

Note that the flow variables are computed and stored at 2N + 1
equally spaced points over one temporal period. Following Eq. (2),
the Fourier coefficients can be determined from the sub-time level
solutions by a discrete Fourier transform, i.e.,

Ũ = EU ∗ (3)

Conversely, the conservation variables at the sub-time levels can
be determined from the Fourier coefficients by the inverse discrete
Fourier transform given by

U ∗ = E−1Ũ (4)

Note that E and E−1 are square matrices as the number of sub-
time levels is equal to the number of Fourier coefficients. More
specifically, E and E−1 are given as
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