

Available online at www.sciencedirect.com

Progress in Aerospace Sciences 41 (2005) 471-513

www.elsevier.com/locate/paerosci

Scramjets and shock tunnels-The Queensland experience

R.J. Stalker*, A. Paull, D.J Mee, R.G. Morgan, P.A. Jacobs

Mechanical Engineering, University of Queensland, Brisbane, Qld 4072, Australia

Abstract

This article reports on the use of a shock tunnel to study the operation of scramjet powered configurations at sub-orbital velocities above 2 km/s. Thrust, as given by a net thrust equation, is used as a figure of merit throughout the study. After a short description of the shock tunnel used and its operating characteristics, experiments on the combustion release of heat in a constant area duct with hydrogen fuel are reviewed. The interaction between heat release in the combustion wake and the walls of the duct produced pressure distributions which followed a binary scaling law, and indicated that the theoretically expected heat release could be realized in practice, albeit with high pressure or long combustion ducts. This heat release, combined with attainable thrust nozzle characteristics and a modest level of configuration drag, indicated that positive thrust levels could be obtained well into the sub-orbital range of velocities. Development of a stress wave force balance for use in shock tunnels allowed the net thrust generated to be measured for integrated scramjet configurations and, although the combination of model size and shock tunnel operating pressure prevented complete combustion of hydrogen, the cruise condition of zero net thrust was achieved at 2.5 km/s with one configuration, while net thrust was produced with another configuration using an ignition promoter in hydrogen fuel. Nevertheless, the combination of boundary layer separation induced inlet choking and limited operating pressure levels prevented realization of the thrust potential of the fuel. This problem may be alleviated by recent increases in the shock tunnel operating pressures, and by promising research involving inlet injection of the fuel.

Research on the drag component of the net thrust equation resulted from the development of a fast response skin friction gauge. It was found that existing theories of turbulent boundary skin friction predicted the skin friction when combustion of hydrogen occurred outside the boundary layer, but combustion within the boundary layer dramatically reduced the skin friction. Finally, for the first time in the world, supersonic combustion was produced in a free flight experiment. This experiment validated shock tunnel results at stagnation enthalpies near 3 MJ/kg. © 2005 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	473
2.		4/4
3.	Prior shock tunnel scramjet tests	475
4.	The free piston shock tunnel T4	475
	4.1. Test times—driver gas contamination of the test flow	476
	4.2. Fuel supply	476

0376-0421/\$ - see front matter C 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.paerosci.2005.08.002

^{*}Corresponding author.

Nomenclature

			(1 a)
A	flow cross-sectional area (m ²)	ΔQ	heat
A_{∞}	frontal area (m ²)		(=3)
$C_{\rm D}$	drag coefficient = $2D/(\rho_{\infty}U^2A_{\infty})$		gen)
$C_{\rm TN}$	thrust coefficient = $2T_N/(\rho_{\infty}U^2A_{\infty})$	T_{N}	net f
C_i	injected fuel thrust coefficient	$T_{\rm NN}$	net f
Ď	drag (N)		tion
en	nozzle efficiency = $thrust/(one-dim. noz-$		kine
	zle thrust)	ΔT	thru
F	thrust function		nozz
g	gravitational acceleration (m/s^2)	U	frees
$I_{\rm sp}$	specific impulse (s)	γ	ratio
M	Mach number	$\dot{\theta}$	flow
$M_{\rm c}$	Mach number after combustion heat	$\theta_{\rm D}$	initia
-	release	v	Pran
п	$\Delta T/T_{\rm NN}$ combustion duct + thrust noz-	ρ	dens
	zle efficiency	ρ_{∞}	frees
р	pressure (Pa)		
-	· · · · ·		

- pressure after combustion heat release $P_{\rm c}$ $(\mathbf{P}_{\mathbf{a}})$
- released by fuel combustion in air 3.45 MJ/kg for stoichiometric hydro-
- forward thrust (N)
- forward thrust when all of combusheat release is converted to stream etic energy (N)
- st increment with one-dimensional zle (N)
- stream velocity (m/s)
- o of specific heats
- direction
- al nozzle divergence angle
- ndtl-Meyer function
- sity (kg/m^3)
- stream density (kg/m^3)

	4.3.	Early experiments.	477
	4.4.	Steady flow for scramjet experiments	477
5.	Super	sonic combustion in a duct.	478
6.	The t	wo-dimensional combustion wake	479
	6.1.	Wake independent of duct height.	480
	6.2.	Mass spectrometer wake traverses	480
	6.3.	Scaling of supersonic combustion	481
	6.4.	Thrust and specific impulse potential	482
	6.5.	Fuel injection.	484
	6.6.	Length of combustion duct	486
7.	The t	wo-dimensional thrust nozzle	487
	7.1.	The supersonic thrust nozzle	487
	7.2.	Nozzle adjustment for matching	488
	7.3	Straight (i.e. constant divergence) nozzles	488
	7.4	Non-uniform Mach number profile at nozzle entry	489
	7.5	Three-dimensional effects	490
8.	The F	Busemann scramiet	490
9	Force	measurement	492
10	Integ	rated scramiet force measurements	494
10.	10.1	Model design	494
	10.1.	Performance of the model	105
	10.2.	Hydrogen fuelled scramiet models	107
	10.5.	Lift and nitching moment on a scramiet model	107
	10.4.	Boundary layer senaration and chaling	100
11	Inlat i	boundary layer separation and choking	100
11.	Skin f	rigetion, radical farming and kinetic arterourning	501
12.	12.1	Skin friction gauge development	501
	12.1.	Skin-inction gauge development	502
	12.2.	Skin friction with mainstream combustion	502
12	12.3. The re	Skin meton reduction by boundary layer combustion.	505
13.	1 ne v		505
	13.1.	Effect of freestream oxygen radicals.	505
	13.2.	Shock tunnel vs. vitiated blowdown tunnel.	506
	13.3.	Shock tunnel vs. flight. The hyshot experiment	507

Download English Version:

https://daneshyari.com/en/article/10681710

Download Persian Version:

https://daneshyari.com/article/10681710

Daneshyari.com