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a b s t r a c t

The study of nonlinear frequency mixing for acoustic standing waves in a resonator cavity is presented.
Two high frequencies are mixed in a highly nonlinear bubbly liquid filled cavity that is resonant at the
difference frequency. The analysis is carried out through numerical experiments, and both linear and
nonlinear regimes are compared. The results show highly efficient generation of the difference frequency
at high excitation amplitude. The large acoustic nonlinearity of the bubbly liquid that is responsible for
the strong difference-frequency resonance also induces significant enhancement of the parametric fre-
quency mixing effect to generate second harmonic of the difference frequency.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear interaction of two collinear high-frequency sounds
beams propagating in a fluid results in the generation of both
sum and difference frequency components due to mixing of these
frequencies in the fluid [1]. Typically, the sum frequency gets
absorbed in the fluid while the difference frequency continues.
This low frequency signal is characterized by a narrow beam-width
and is nearly side-lobe free, which is useful in many applications,
such as sonar, depth sounding, sea-floor profiling, directional com-
munication, and medical ultrasound. This nonlinear effect was
described theoretically by Westervelt [2] who showed that the dif-
ference frequency wave could be considered to be radiated from an
array of acoustic sources distributed continuously throughout the
interaction volume similar to an end-fire array. This parametric
end-fire array was first demonstrated experimentally by Bellin
and Beyer [3] in water and later the work was expanded on by
Berktay [4]. The development of underwater parametric sonar
relies on this nonlinear interaction process.

Besides water, other nonlinear fluids (organic fluids) [5] and
materials (rubber, granular media) [6,7] have been used for
frequency mixing and difference frequency generation. Recently,

Sinha and Pantea showed enhanced frequency mixing and differ-
ence frequency beam generation in Fluorinert [8].

The study of acoustical nonlinear behavior of liquid containing
microbubbles has been of interest for many years. The increasing
interest in bubbly liquids is related to the fact that existence of
bubbles may enhance the acoustic nonlinearity of a liquid due to
the nonlinear oscillations of bubbles even at very small void frac-
tions [9], over a large frequency band covering their resonance
and frequencies below. In a bubbly fluid, contributions to the bulk
acoustic nonlinearity arise due to primary contributions from (i)
nonlinearity of the equation of state of the liquid, (ii) nonlinearity
of the equation of state of the gas, and (iii) the dynamical nonlin-
earity of the bubbles (dominant at bubble resonance and on a large
frequency range below resonance).

If two primary acoustic waves of different frequencies are inci-
dent on a bubbly fluid, the scattered field will include both sum
and difference frequencies and various harmonics [10]. Therefore,
the increased nonlinearity can enhance the efficiency of parametric
array (due to difference frequency generation in an end-fire array
configuration) in underwater acoustics (e.g., communication and
sea-bottom imaging) [11] and also for medical imaging (e.g., detec-
tion of gas bubbles in blood or tissue), and bubble sizing [12,13] in
industrial applications. Harmonic imaging using ultrasound con-
trast agents (microbubbles) in medical ultrasound imaging has
become an emerging field. The effective nonlinearity of bubbly
liquids can be orders of magnitude greater at resonance and at
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frequencies below than at frequencies above. Kobelev and Sutin
[14] conducted the first experimental demonstration of the fre-
quency mixing in bubbly liquids. Woodsum [15] suggested the
use of air bubbles to enhance the efficiency of parametric fre-
quency mixing due to the large acoustic nonlinearity of such bub-
bles. In addition, such a system also provided significantly higher
loss of the primary frequencies if the bubbles are resonant. Druzh-
inin et al. [16] showed a way to enhance mixing efficiency while
reducing loss by using a layer of non-resonant bubbles. Even
non-resonant bubbles have a much stronger nonlinearity than that
of water and a bubble layer has a lower sound speed than water
below bubble resonance. Such a bubble layer can also produce res-
onance effects due to reflecting boundaries and significantly
enhance difference frequency generation.

Cavity resonant enhancement of nonlinear processes has been
studied for several decades in the electromagnetic spectrum and
in various frequency conversion devices. In comparison, such stud-
ies in acoustics, in particular, in nonlinear fluids is limited. Strong
difference frequency generation in a small geometry such as in a
resonator cavity has many potential applications in several areas
of technology. Any fluid with acoustic nonlinearity can be used
in a resonant cavity to enhance the resonance of the difference fre-
quency produced by parametric frequency mixing.

This fact has motivated this study of enhanced difference fre-
quency generation in a small cavity using bubbly fluid. Here, we
present our first theoretical analysis to observe the magnification
of the difference frequency component in a nonlinear fluid-filled
resonant cavity. This analysis is carried out via numerical simula-
tions. We plan to corroborate the results of this analysis through
experiments in the near future.

This study focuses on numerical simulations made at off-reso-
nance frequencies. The primary frequencies are selected to be
below the bubble resonance frequency: the bubbly medium at
both primary frequencies has very high acoustic nonlinearity.

In contrast to the study in Ref. [16], our study simply takes
advantage of the nonlinearity of the bubbly fluid in the cavity
and does not directly excite resonance in a bubbly layer. The differ-
ential model used in Ref. [16] is a quasistatic model for isothermal
gas, dependent on the volume fraction of gas but independent of
the bubble radius, while the differential system we use considers
an adiabatic gas and assumes the bubble volume variation as an
unknown variable of the problem, which allows the nonlinear
dynamics of the bubbles to affect the standing wave, and vice
versa. In addition, the study in Ref. [16] used frequencies much
lower than this work with respect to the bubble resonance.

2. Materials and methods

We consider a mixture of water and a high-density population
of uniform size small air bubbles in a one-dimensional resonator
cavity. This bubbly liquid is both highly nonlinear and dispersive,
and has complex attenuation properties [17]. No acoustic pertur-
bations or bubble vibrations are considered at the outset. A pres-
sure source is set at one end x = 0 m and a free wall is considered
at the other end x = lx. The source excites the bubbly liquid at
two driving frequencies: f1 and f2 via the following time-dependent
function p0g(f1, f2, t), for which the same amplitude p0 is used.
The cavity is chosen to be resonant at the difference frequency
fd = f2 � f1, by setting its length at 3=4 of the wavelength at fd in
the bubbly liquid, which magnifies the generation of the difference
frequency component. The frequencies used in the numerical cal-
culations presented below are chosen to be low enough below
the bubble resonance to avoid strong attenuation that would limit
the difference frequency generation.

In all the following numerical experiments we choose an initial
bubble radius of R0g = 2.5 lm that corresponds to a resonance fre-
quency fr = 1.35 MHz, and for their density in water we set a value
of Ng = 5 � 1011 m�3 (void fraction of 0.0033%). Note that buoyancy
is not taken into account in this study and homogeneous bubble
distribution is maintained. We set the primary frequencies at
f1 = 0.7 MHz and f2 = 0.9 MHz (f1/fr = 0.52 and f2/fr = 0.66). Their
predicted phase speeds in the bubbly liquid are c1 = 1160 m s�1

and c2 = 1094 m s�1, respectively [17]. The difference frequency is
fd = 200 kHz (fd/fr = 0.15), which means that its predicted phase
speed in the considered bubbly liquid is cd = 1223 m s�1 and the
length of the cavity is thus set at lx = 4.6 mm. 3.5 periods at f1

and 4.5 periods at f2 correspond to 1 cycle at fd.
The situation described above suits the possibility of the Snow-

Bl numerical code [18], which solves, from time t = 0 s up to t = lt, a
differential system coupling the behavior of the acoustic field in
the cavity (wave equation written in acoustic pressure p(x, t)) to
the vibration of the bubbles (Rayleigh–Plesset equation written
in bubble-volume variation v(x, t), i.e., the difference between the
current volume and the initial bubble volume v0g) by means of a
finite-differences algorithm. The coupled system was described
in Refs. [9,10,17]:
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and the auxiliary conditions are
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In these equations, xr = 2pfr, c0l is the small-amplitude sound
speed of the liquid, q0l is the equilibrium density of the liquid,
d ¼ 4lk=xrR

2
0g is the viscous damping coefficient of the bubbly

liquid, lk is the kinematic viscosity of the liquid, g = 4pR0g/q0l,
a ¼ ðcg þ 1Þx2

r =2v0g , b = 1/6v0g, and cg is the specific heat ratio of
the gas.

The following restrictions are applied to this system: (i) the
nonlinear phenomena are due to the bubbles only; (ii) the void
fraction is much lower than 1; (iii) the bubbles are of uniform size
and spherical; (iv) the bubble pulsations are spherically symmet-
ric; (v) the wavelength in the bubbly liquid is large compared with
the bubble radius; (vi) there are no interactions among bubbles;
(vii) the surface tension of the bubbles is considered negligible;
(viii) the bubbles do not radiate sound themselves; and (ix) the
adiabatic gas law holds. The solution gives the acoustic pressure
and bubble volume variation fields which are both nonlinear at
high amplitudes.

3. Results

Fig. 1 displays the waveform of acoustic pressure at x = lx/2 dur-
ing the last periods. The curves in Fig. 1 refer to a small amplitude
case (linear regime, first point in Fig. 3) and to a high amplitude
case (nonlinear regime, last point in Fig. 3). Note that the steady
state was reached in all the simulations run and presented here.
The comparison of these waveforms shows the existence of distor-
tion when amplitudes are high, which includes a sharpening of
wave fronts and an asymmetry of negative and positive acoustic
pressures (oscillations traducing the existence of new frequencies),
due to the nonlinearity of the medium, whereas the small ampli-
tude signal shows a signal governed by the two driving frequencies
only.
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