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a b s t r a c t

The natural frequencies and distributions of displacement components for the surface vibrational modes
in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for
low-lying resonant vibrations with large angular wave numbers. Several families of modes are found
which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate.
The results of calculation are compared with the results of the experimental measurements of vibrational
modes generated by means of resonant excitation in duraluminum disk with radius of �90 mm and
thickness of 16 mm in the frequency range of 130–200 kHz. An excellent agreement between the calcu-
lated and measured frequencies is found. Measurements of the structure of the resonant peaks show
splitting of some modes. About a half of the measured modes has splitting Dfsplit=fmode at the level of
the order of 10�5. The Q-factors of all modes measured in vacuum lie in the interval (2. . .3) � 105. This
value is typical for duraluminum mechanical resonators in the ultrasonic frequency range.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

High quality factor (Q) microsphere, microtoroid and microdisk
optical resonators with whispering gallery (WG) modes have re-
ceived increasing interest in recent years in a wide range of appli-
cations [1,2]. Similar to the case of the optical resonators, one may
expect numerous applications of mechanical resonators with sur-
face vibrational modes. They can be used as signal filters for tele-
communication and as biological and chemical sensors [3]. The
sensitivity to surface layers makes them suitable for materials sci-
ence related measurements and nondestructive testing. With the
development of cavity optomechanics the growing interest to the
interactions between high-Q optical and mechanical surface modes
and to the possible usage of such interactions in various applica-
tions has appeared [4].

In nonpiezoelectrical materials broadband surface acoustic
waves are usually generated thermoelastically by short laser
pulses [5,6]. Broadband surface acoustic waves including cylindri-
cal Rayleigh and WG modes propagating along cylindrical surfaces
were investigated theoretically and experimentally [7].

In this paper the results of the experimental study of surface
vibrational modes with large angular wave numbers generated
by means of resonant electrostatic excitation in a thin duralumi-
num disk are presented. The results of measurements are com-
pared with the results of theoretical calculation of the natural
frequencies and distributions of the displacement components

for the surface vibrational modes in thin isotropic elastic disks. This
allows us to identify the types of surface modes to which the mea-
sured modes belong. The Q-factors of the modes were measured in
vacuum in order to exclude gas damping. Splitting of the resonant
peaks was found for some modes.

2. Theoretical analysis

Eigenfrequencies and mode shapes of vibrating cylinders can be
calculated using different methods. Among the numerical methods
one of the most wide-spread is the Ritz method [8], which has re-
cently been used to study axisymmetric vibrations of short cylin-
ders [9], flexural vibrations of cylinders under axial loads with
angular wave number of n = 1 [10] and vibrations of cylinders with
V-notches and sharp radial cracks [11]. Three-dimensional finite
difference time domain method was used to study excitation and
frequency response of WG modes in disk-shaped resonators [12].

In order to calculate eigenfrequencies and mode shapes of
vibrating a vibrating circular cylinder with free boundaries the
analytic method developed by various authors [13,14] has been
used. Hutchinson [14] obtained the frequency spectra of vibra-
tional modes with angular wave numbers from n = 0 to n = 4 with
thickness-to-diameter ratio h varying in the range of 0 < h < 2. This
method was also used in a recent work by Tamura [15], where the
vibrations of a circular cylinder with high angular wave numbers n
were studied. In Tamura’s work the vibrations of a thick cylinder
with thickness-to-diameter ratio h � 1 were mainly considered,
but the case of a thin disk with h = 0.05 was also briefly described.
In particular, the eigenfrequencies and mode shapes of vibrational
modes with angular wave number n = 20 and the lowest resonant
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frequencies were calculated. Recently several modifications of this
method were developed: to determine vibration response of a cyl-
inder subjected to arbitrary distribution of axisymmetric excitation
on its surfaces [16] and to study the vibrations of hollow cylinders
with free and partially fixed boundaries [17].

In our calculations the method developed by Hutchinson is
used. It involves the construction of the solutions as linear combi-
nations of exact solutions of the differential equations of motion in
three series which satisfy three of the six boundary conditions. The
remaining three boundary conditions are then satisfied by orthog-
onalization of the corresponding stress tensor components on the
boundaries. This leads to a homogeneous system of linear equa-
tions, from which the values of eigenfrequencies and the exact val-
ues of constant coefficients in solution series are calculated. The
solution converges as more terms in the series are considered.

The calculation result is thereby an approximate solution which
identically satisfies the differential equations and approximately
satisfies the boundary conditions. Nevertheless, some authors
[14] prefer to classify this method as an ‘‘exact’’ one, so far as it al-
lows to construct exact infinite series solutions.

The calculation method is described in detail in Section 2.1 in
order to provide the readership with a complete implementa-
tion-ready algorithm of calculation of resonant frequencies and
displacement vector distributions for the vibrational modes of iso-
tropic disks.

2.1. Method of computation

The freely vibrating disk is considered as a circular cylinder
with radius a and height (thickness) 2H and with stress–free
boundaries.

The equation of motion for the displacement vector U in isotro-
pic elastic medium is

q€U ¼ ðkþ 2lÞrðr � UÞ � lr� ðr� UÞ; ð1Þ

where k and l are the Lame coefficients and q is the mass density.
We introduce the dimensionless (divided by disk radius a) com-

ponents of displacement vector u ¼ fur ;uh;uzg and coordinates r, z;
the dimensionless stress tensor components (divided by the shear
modulus l) rik; dimensionless wave numbers (multiplied by the
disk radius a) a; b and d; dimensionless angular frequency x that
is made dimensionless by multiplying angular frequency X by
the disk radius a and dividing by the transverse wave velocity
v t ¼

ffiffiffiffiffiffiffiffiffi
l=q

p
. Dimensionless thickness parameter is thickness-to-

diameter ratio h ¼ H=a.
The six boundary conditions are

rzrðr; h;�hÞ ¼ 0; ð2aÞ
rzhðr; h;�hÞ ¼ 0; ð2bÞ
rzzðr; h;�hÞ ¼ 0; ð2cÞ
rrrð1; h; zÞ ¼ 0; ð2dÞ
rrhð1; h; zÞ ¼ 0; ð2eÞ
rrzð1; h; zÞ ¼ 0: ð2fÞ

We choose the three boundary conditions (2a), (2b) and (2f) to
be satisfied identically. This is an arbitrary choice, the only restric-
tion of the following method is that we cannot satisfy three bound-
ary conditions on one boundary identically.

The solution is constructed as a linear combination of basic
solutions [14]:

vðr; h; zÞ ¼
XNz

i¼1

AivAiðr; h; zÞ þ
XNr

j¼1

BjvBjðr; h; zÞ þ
XNz

i¼1

CivCiðr; h; zÞ; ð3Þ

where v stands for displacement vector components ur;uh; uz and
stress tensor components rlm with the same three series of con-

stants Ai;Bj and Ci. We exclude the time dependence by assumption
that all components of the displacement vector and all components
of the stress tensor vary in time sinusoidally with the same phase
and frequency.

Explicitly, the radial displacement is taken in the following
form:

urAi
¼ ½2ðb2

Ai � a2
AiÞvnðbAiÞvnðdAirÞ þ 4a2

AivnðdAiÞvnðbAirÞ�

� rn�1 cosðaAizÞ= cosðaAihÞ
sinðaAizÞ= sinðaAihÞ

� �
cos nh;

ð4Þ

urBj
¼ 2ða2

Bj�b2
BjÞ

cosðdBjzÞsincðbBjhÞ
sincðdBjzÞcosðbBjhÞ

( )
þ4

d2
Bj cosðbBjzÞsincðdBjhÞ

b2
BjsincðbBjzÞcosðdBjhÞ

( )" #

�
h
z

� �
rn�1 vnðaBjrÞ

/nðaBjÞ
cosnh;

ð5Þ

urCi
¼ ½�4vnðdCiÞ/nðbCirÞ þ 2/nðbCiÞvnðdCirÞ�

� nrn�1 cosðaCizÞ= cosðaCihÞ
sinðaCizÞ= sinðaCihÞ

� �
cos nh;

ð6Þ

for the axial displacement we take (we omit the indices i and j for
simplicity; they relate to the terms u;a;b and d in the same way
as in the previous three equations)

uzA ¼ ½2ðb
2
A � a2

AÞvnðbAÞ/nðdArÞ � 4b2
AvnðdAÞ/nðbArÞ�

� aArn � sinðaAzÞ= cosðaAhÞ
cosðaAzÞ= sinðaAhÞ

� �
cos nh;

ð7Þ

uzB ¼ 2ða2
B�b2

BÞ
sincðdBzÞsincðbBhÞ
cosðdBzÞcosðbBhÞ

� �
�4a2

B

sincðdBhÞsincðbBzÞ
cosðdBhÞcosðbBzÞ

� �� �

� �d2
Bhz

1

( )
rn /nðaBrÞ

/nðaBÞ
cosnh;

ð8Þ

uzC ¼ 2n/nðbCÞ/nðdCrÞaCrn �
� sinðaCzÞ= cosðaChÞ
cosðaCzÞ= sinðaChÞ

� �
cos nh; ð9Þ

and for the angular displacement we take

uhA
¼ � 2ðb2

A � a2
AÞvnðbAÞ/nðdArÞ þ 4a2

AvnðdAÞ/nðbArÞ
� �

� nrn�1 cosðaAzÞ= cosðaAhÞ
sinðaAzÞ= sinðaAhÞ

� �
sin nh;

ð10Þ

uhB ¼� 2ða2
B�b2

BÞ
cosðdBzÞsincðbBhÞ
sincðdBzÞcosðbBhÞ

� �
þ4

d2
B cosðbBzÞsincðdBhÞ

b2
BsincðbBzÞcosðdBhÞ

( )" #

�
h

z

� �
nrn�1 /nðaBrÞ

/nðaBÞ
sinnh;

ð11Þ

uhC ¼ ½4vnðdCÞvnðbCrÞ � 2n2/nðbCÞ/nðdCrÞ�rn�1

�
cosðaCzÞ= cosðaChÞ
sinðaCzÞ= sinðaChÞ

� �
sin nh:

ð12Þ

The relations between dimensionless wave numbers a; b and d
and frequency x are

a2 þ b2 ¼ x2; ð13Þ

a2 þ d2 ¼ x2 1� 2r
2ð1� rÞ ¼

x
g

	 
2

; ð14Þ

where r is the Poisson’s ratio and g ¼ v l=v t .
The functions /n and vn introduced in Eqs. (4)–(12) are defined

as
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