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28Surface wave motions generated by a time-harmonic point load applied at the surface of an isotropic lin-
29early elastic half-space are conventionally solved by the use of integral transform techniques. The inverse
30transforms, are often complicated and will not always yield closed-form solutions. In this paper expres-
31sions for the displacements for surface wave motions radiated from point-load excitation are determined
32in a simple manner by the use of the elastodynamic reciprocity theorem. It is shown that the radiated
33amplitudes of the surface displacements obtained by the reciprocity approach are identical to the corre-
34sponding results obtained by the use of Hankel transform and by Lamb in his classical paper.
35� 2014 Published by Elsevier B.V.
36
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38

39 1. Introduction

40 The wave motion generated by application of a time-harmonic
41 point load at the surface of an elastic half-space is a fundamental
42 problem of elastodynamics. The solution was obtained by Lamb
43 [1] in 1904. The problem is now known as Lamb’s problem. Lamb
44 fully discussed the wave motions generated by a line load and a
45 point load applied normal to the surface. Explicit expressions were
46 given for the generated surface waves, for both loads of harmonic-
47 time dependence and impulsive loads. Lamb’s method is, however,
48 very intricate. Using Hankel and Laplace transforms, Pekeris [2]
49 gave exact and closed-form expressions for the displacements for
50 the case when the load varies like the Heaviside step function.
51 Nearly simultaneously with Pekeris, the normal load problem
52 was also treated by Pinney [3]. Subsequent discussions can be
53 found in the books by Ewing et al. [4], Achenbach [5], and Graff
54 [6]. In these books, Lamb’s methods and solutions have been cast
55 in a somewhat more elegant form and more detailed computations
56 have been carried out, particularly for loads of arbitrary time
57 dependence, based on the use of integral transform techniques.
58 The response of an elastic half-space to a tangential surface load
59 varying with time as the Heaviside step function was investigated
60 by Chao [7]. Several numerical calculations for Lamb’s problem

61have also been carried out, for example, by Mooney [8] and Chuhan
62et al. [9].
63Solutions for Lamb’s problem by integral transform techniques
64require inverse integral transforms which are often complicated
65and will not always yield closed-form solutions. Moreover, the
66integral transform approach becomes more difficult for anisotropic
67solids, and impossible for inhomogeneous solids, for example, sol-
68ids whose elastic moduli depend on the depth coordinate, as in
69geophysical applications and functionally graded materials. To
70avoid these difficulties, another approach has been proposed in
71recent years, based on the elastodynamic reciprocity theorem,
72strictly to determine the surface waves, see Achenbach and Xu
73[10], Achenbach [11], Achenbach [12,13], and Phan et al. [14].
74It is, of course, of interest to compare the results obtained by the
75reciprocity approach with the corresponding results obtained by
76the use of integral transform techniques. The classical approach
77shows that a normal point load on a homogeneous half-space
78generates body waves, their interactions which are called head
79waves, and classical surface waves. Sufficiently far away from the
80point of load application the surface waves dominate. Still it cannot
81be assumed that all the energy that reaches large distances ends up
82in surface waves only. Therefore if the far-field is a priori assumed
83to be only a surface wave, as is done in the application of the
84reciprocity theorem, it cannot be assumed without verification that
85the reciprocity theorem produces the same result as the classical
86approach which is based on a computation that includes all
87waves. It is indeed necessary to verify that the simple reciprocity
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88 approach gives the same result as Lamb’s Fourier Integral
89 approach.
90 The main purpose of the current paper is, therefore, to show
91 that the method based on the elastodynamic reciprocity theorem
92 is exceedingly simple, and most importantly gives results identical
93 to the ones obtained by the aid of the Hankel transform and by
94 Lamb [1]. The paper proceeds through 5 sections. In Section 2,
95 the method to determine the displacement fields of surface waves
96 generated by a time-harmonic point load using the reciprocity the-
97 orem is discussed. In Section 3 solutions of surface waves gener-
98 ated by a point load are obtained by the use of Hankel transform
99 and shown to be mathematically the same as the results obtained

100 by Lamb. Section 4 shows the verification of the reciprocity
101 approach in comparison with the Hankel transform approach and
102 the methods of Lamb’s paper. Section 5 states conclusions.

103 2. Surface waves generated by a time-harmonic point load

104 It has been shown in [12] that the reciprocity theorem can be
105 used to determine the surface wave motion generated by a time-
106 harmonic point load applied at the surface of a half-space. The sur-
107 face wave motion is calculated in a simple manner by the reciproc-
108 ity theorem, with input the actual surface wave with unknown
109 amplitude and a virtual free surface wave. The method requires
110 expressions for the displacements and the stresses of free surface
111 waves, preferably in analytical form, but numerically obtained
112 forms can also be used. Fig. 1 shows a half-space of a homoge-
113 neous, isotropic, linearly elastic solid referred to Cartesian and
114 cylindrical coordinates, such that the x1x2-plane coincides with
115 the surface of the half-space. The half-space is subjected to a
116 time-harmonic point load at the surface pointing in an arbitrary
117 direction. Without loss of generality, the coordinate system can
118 be chosen such that the load acts in the x1z-plane, at the origin
119 of the system. The surface wave response is then sought as the
120 superposition of the responses due to the normal component P
121 and the component Q in the x1-direction. It is convenient to also
122 use cylindrical coordinates ðr; h; zÞ defined by x1 = r cosh,
123 x2 ¼ r sin h; z.
124 In addition that its amplitude decreases with depth, a surface
125 wave is defined by an angular frequency x and a wavenumber k,
126 where k = x/c, c being the surface wave velocity, as well as mate-
127 rial properties, the Lamé constants k and l, and the mass density q.
128 It has been shown in [12] that in cylindrical coordinates a
129 guided wave, such as a Rayleigh surface wave can be represented
130 by
131

ur ¼ UðzÞk�1 @u
@r

e�ixt ð1Þ

uh ¼ UðzÞðkrÞ�1 @u
@h

e�ixt ð2Þ

uz ¼WðzÞue�ixt; ð3Þ133133

134where for axially-symmetric Rayleigh waves uðrÞ is the solution of
135

@2u
@r2 þ

1
r
@u
@r
þ k2u ¼ 0 ð4Þ 137137

138When the Rayleigh waves are not axially symmetric, the equation
139for uðr; hÞ is
140

@2u
@r2 þ

1
r
@u
@r
þ 1

r2

@2u
@h2 þ k2u ¼ 0 ð5Þ 142142

143For both cases the functions U(z) and W(z) are the solutions of the
144same set of coupled equations whose solutions are
145

UðzÞ ¼ d1e�kpz þ d2e�kqz ð6Þ
WðzÞ ¼ d3e�kpz � e�kqz; ð7Þ 147147

148where
149

d1 ¼
�ð1þ q2Þ

2p
; d2 ¼ q; d3 ¼

1þ q2

2
ð8Þ

151151

152Here
153

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=c2

L

q
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=c2

T

q
ð9Þ

where cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
; cT ¼

ffiffiffiffiffiffiffiffiffi
l=q

p
ð10Þ 155155

156are the longitudinal and transverse wave velocities, respectively.
157Let us first consider the case of a horizontal time-harmonic load
158applied at the origin on the surface of the half-space, pointing in
159the x1-direction
160

f1 ¼ Qdðx1Þdðx2ÞdðzÞe�ixt ð11Þ 162162

163It has been argued by Achenbach [12, p.135] that for this case Eq.
164(5) applies, and we should consider the solution
165

uðr; hÞ ¼ AQUðkrÞ cos h ð12Þ 167167

168where for an outgoing wave compatible with exp(�ixt) we have
169

UðkrÞ ¼ Hð1Þ1 ðkrÞ ð13Þ 171171

172We can equally well consider an incoming wave, i.e., a wave that
173converges on the origin,
174

�UðkrÞ ¼ Hð2Þ1 ðkrÞ ð14Þ 176176

177In Eqs. (13) and (14), HðiÞj ðnÞ is the jth order Hankel function of the
178ith kind.
179Expressions for the displacements corresponding to
180Eqs. (12)–(14) have been given by in [12 , pp.137-138]. For the
181reciprocity theorem, we consider the region V defined by
1820 6 r 6 b;0 6 z 61;0 6 h 6 2p. As part of the reciprocity theorem
183we have to determine the interaction of the force defined by Eq.
184(11) with the compatible displacement in the x1-direction of the
185virtual wave. The virtual wave is chosen as the sum of an outgoing
186and a converging wave, as defined by Eqs. (8.4.5)–(8.4.7) of Achen-
187bach [12], i.e., for uB

r we have
188

uB
r ¼

1
2

BUðzÞ½U0ðkrÞ þ �U0ðkrÞ� cos h; ð15Þ 190190

191where U(kr) and UðkrÞ are defined by Eqs. (13) and (14), and the
192prime defines the derivative with respect to the argument.
193The derivatives appearing in Eq. (15) can be calculated from a
194standard formula McLachlan [15 , p. 198, no. 128]. The details,
195which have been given by Hao et al. [16 Eqs. (A-32)–(A-38)], result
196in
197

U0ðnÞ þU0ðnÞ ¼ 2
n

J1ðnÞ � 2J2ðnÞ ð16Þ 199199Fig. 1. Half-space subjected to a time-harmonic point load.
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