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a b s t r a c t

We study the propagation of thickness-twist (TT) waves in a crystal plate of AT-cut quartz with period-
ically varying, piecewise constant thickness. The scalar differential equation by Tiersten and Smythe is
employed. The problem is found to be mathematically equivalent to the motion of an electron in a peri-
odic potential field governed by Schrodinger’s equation. An analytical solution is obtained. Numerical
results show that the eigenvalue (frequency) spectrum of the waves has a band structure with allowed
and forbidden bands. Therefore, for TT waves, plates with periodically varying thickness can be consid-
ered as phononic crystals. The effects of various parameters on the frequency spectrum are examined.

� 2014 Published by Elsevier B.V.

1. Introduction

It is well known that the motion of a mobile charge in a crystal is
governed by Schrodinger’s equation with a periodic potential, and
the resulting eigenvalue spectrum has a band structure with
allowed and forbidden electronic energy bands that can describe
semiconduction [1]. Mathematically, this is a consequence of the
periodically varying coefficients in the governing differential
equation and the periodic boundary conditions. Therefore the band
structure of the eigenvlaue spectrum also appears in other periodic
physical systems, e.g., the propagation of electromagnetic or
acoustic waves in periodically varying materials or structures called
photonic [2,3] or phononic [4,5] crystals. The study of photonic and
phononic crystals has led to new materials and structures with
potentials for new and useful optic or acoustic wave devices. This
paper is concerned with phononic crystals which have been
developed for both surface [6,7] and bulk [8–12] acoustic waves.
The literature on phononic crystals are abundant are growing rap-
idly [13–23]. In this paper we study a special class of acoustic waves
in elastic plates called thickness-twist (TT) waves [24] which are
widely used as the operating modes of acoustic wave resonators
and sensors. Differing from most phononic crystal plates in the
literature which are made from composite materials, the plate in
the present analysis is made from a homogeneous material but it
has a periodically changing thickness. TT waves are classified as

high-frequency waves in plates. Their dispersion relations have
finite cutoff frequencies below which the waves cannot propagate.
This is fundamentally different from the low-frequency waves of
extension and flexure whose dispersion relations do not have cutoff
frequencies. We show theoretically that when an elastic plate has a
periodically varying thickness, the governing equation for the high-
frequency TT waves is mathematically equivalent to Schrodinger’s
equation with a periodic potential. The solution of the equation
shows that the frequency spectrum of these waves exhibits band
gaps that prevent TT phonons with selected ranges of frequencies
from being transmitted through the plate.

2. Governing equations

Consider the elastic plate in Fig. 1. It is the cross section of a
plate that is unbounded in the x1 direction which is determined
from x3 and x2 by the right-hand rule. We consider motions inde-
pendent of x1.

Specifically, for AT-cut quartz plates, motions called TT waves
with only one displacement component u1(x2, x3, t) are allowed
by the equations of anisotropic elasticity. The nth-order TT dis-
placement un

1ðx3; tÞ in an AT-cut quartz plate is defined by [25,26]

u1ðx2; x3; tÞ ¼
X1

n¼1;3;5;...

un
1ðx3; tÞ sin

npx2

2h
; ð1Þ

where x2 = y and x3 = z. n is an odd integer. 2h is the plate thickness
which may be a constant or a function of z. By studying the
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propagation of long u1 waves in the z direction, it was shown [25]
that un

1 is governed by the following equation:

c55
@2un

1

@z2 �
n2p2

4h2
�c66un

1 � q€un
1 ¼ 0; ð2Þ

where �c66 ¼ c66 þ e2
26=c66. c55 and c66 are two relevant elastic con-

stants. e26 is a relevant piezoelectric constant.
For time-harmonic motions, we let

un
1ðz; tÞ ¼ wðzÞeixt: ð3Þ

The substitution of (3) into (2) gives

@2w
@z2 þ

M
c55

HðzÞ þ qx2

M

� �
w ¼ 0; ð4Þ

where

M ¼ �n2p2�c66

4
; HðzÞ ¼ 1

hðzÞ2
: ð5Þ

Mathematically, (4) is equivalent to the motion of a mobile
charge in a potential field governed by Schrodinger’s equation
[1]. Therefore the eigenvalue spectrum of (4) under periodic
boundary conditions may be expected to have a band structure.

3. Solution

The solution to (4) is parallel to that in [1] for an electron in a
crystal. We look for a solution in the following form [1]:

wðzÞ ¼ Aeikz: ð6Þ

Substituting (6) into (4), we can determine k through

�k2 þ M
c55

HðzÞ þ qx2

M

� �
¼ 0; k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
c55

HðzÞ þ qx2

M

� �s
; ð7Þ

where for each of the two parts of the plate in Fig. 1, the plate thick-
ness h is a constant and hence H and k are constants. Then the solu-
tion to (4) may be written in the following form:

wðzÞ ¼ Aeikz þ Be�ikz: ð8Þ

According to the well-known Bloch theorem [1], when H(z) is a
periodic function with a period L (see Fig. 1), (8) can be written as
the product of a plane wave characterized by a propagation con-
stant l and a periodic function U(z) with the same period L:

wðzÞ ¼ eilzUðzÞ; ð9Þ

where U(z) satisfies

UðzÞ ¼ Uðzþ LÞ: ð10Þ

According to (9) and (10), w at z + L can be expressed as

wðzþ LÞ ¼ eilðzþLÞUðzþ LÞ ¼ eilLeilzUðzÞ ¼ eilLwðzÞ: ð11Þ

Specifically, for each of the two parts of the plate in Fig. 1, the
nth-order TT displacements un

1 in each part can be written as

un1
1 ¼ ðA1eik1z þ B1e�ik1zÞeixt ; �a < z < 0 ð12Þ

and

un2
1 ¼ ðA2eik2z þ B2e�ik2zÞeixt ; 0 < z < b; ð13Þ

respectively, where

kj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj

cj
55

HjðzÞ þ
qjx2

Mj

� �s
ðj ¼ 1;2Þ: ð14Þ

In (14), to distinguish the parameters of the two parts of the
plate in Fig. 1, we have introduced a subscript (or superscript)
j = 1 or 2.

At the junction between the two parts of the plate in Fig. 1
where z = 0, we impose the continuity of the TT displacement
and the corresponding twisting moment:

un1
1 ð0; tÞ ¼ un2

1 ð0; tÞ;R h1
�h1

c1
55un1

1;3ð0; tÞ sin pnx2
2h1

x2dx2 ¼
R h2
�h2

c2
55un2

1;3ð0; tÞ sin pnx2
2h2

x2dx2:

ð15Þ

In (15), we have denoted u1,3 = ou1/oz. At the two ends of the
plate in Fig. 1, we have the following periodic conditions for the
TT displacement and the twisting moment:

un1
1 ð�a; tÞ ¼ un2

1 ðb; tÞe�ilL;R h1
�h1

c1
55un1

1;3ð�a; tÞ sin pnx2
2h1

x2dx2 ¼ e�ilL
R h2
�h2

c2
55un2

1;3ðb; tÞ sin pnx2
2h2

x2dx2:

ð16Þ

The substitution of (12) and (13) into (15) and (16) yields

A1 þ B1 ¼ A2 þ B2;

h2
1c1

55ðik1A1 � ik1B1Þ ¼ h2
2c2

55ðik2A2 � ik2B2Þ;
A1e�ik1a þ B1eik1a ¼ ðA2eik2b þ B2e�ik2bÞe�ilL;

h2
1c1

55ðik1A1e�ik1a � ik1B1eik1aÞ ¼ e�ilLh2
2c2

55ðik2A2eik2b � ik2B2e�ik2bÞ:
ð17Þ

(17) represents a system of linear homogeneous equations for A1,
B1, A2 and B2:

1 1 �1 �1

k1 �k1 �h2
2c2

55

h2
1c1

55

k2
h2

2c2
55

h2
1c1

55

k2

e�ik1a eik1a �eiðk2b�lLÞ �e�iðk2bþlLÞ

ik1e�ik1a �ik1eik1a �h2
2c2

55

h2
1c1

55

ik2eiðk2b�lLÞ h2
2c2

55

h2
1c1

55

ik2e�iðk2bþlLÞ

2
6666664

3
7777775

A1

B1

A2

B2

2
6664

3
7775¼0:

ð18Þ

For nontrivial solutions the determinant of the coefficient
matrix in (18) has to vanish, which leads to the characteristic equa-
tion that determines the wave frequency x for a given propagation
constant l.

4. Numerical results and discussion

As a numerical example, consider the case when the two parts
of the plate in Fig. 1 are both of AT-cut quartz whose material con-
stants can be found in [27]. For Figs. 2–4 the geometric parameters
are fixed to be h1 = 2h2 = 0.01 m and a = 5b = 0.1 m. Some of them
will be varied later in Figs. 5–7.

Fig. 2 shows the dimensionless frequency X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2

1q1x2=p2�c66

q� �
versus the dimensionless propagation constant lL for the funda-
mental TT wave with n = 1 in (2). The curves vary periodically with
respect to lL. Only the first Brillouin zone with�p < lL < p is shown
in the figure. The dimensionless cutoff frequency for the fundamen-
tal TT waves in the thicker part of the plate with thickness 2h1 is
X = 1. Since h1 = 2h2, the cutoff frequency of the fundamental TT

x2

x32h1

a

2h2

b 

L

Fig. 1. Cross section of an AT-cut quartz plate with a piecewise constant thickness
(unit cell of a periodic plate obtained by repeated extensions in the x3 direction).
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