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a b s t r a c t

The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an
initial hydrostatic pressure p1. For liquids the second-order elastic constants are C11 = A + p1, C12 = A � p1,
and the third-order constants are C111 = �(B + 5A + 3p1), C112 = �(B + A � p1), and C123 = A � B � p1, where
A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second-
order constants are C11 = p1c + p1, C12 = p1c � p1, and the third-order constants are C111 = �p1(c2 + 4c + 3),
C112 = �p1(c2 � 1), and C123 = �p1 (c2 � 2c + 1), where c is the ratio of specific heats. The inequality of C11

and C12 results in a nonzero shear constant C44 = (1/2)(C11 � C12) = p1 for both liquids and gases. For water
at standard temperature and pressure the ratio of terms p1/A contributing to the second-order constants
is approximately 4.3 � 10�5. For atmospheric gases the ratio of corresponding terms is approximately 0.7.
Analytical expressions that include initial stresses are derived for the material ‘nonlinearity parameters’
associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal sym-
metry. The expressions are used to validate the relationships for the elastic constants of fluids.

Published by Elsevier B.V.

1. Introduction

Nonlinear acoustical methods are becoming increasing popular
for the nondestructive evaluation and characterization of materials
[1–9]. Often the research centers on assessing the mechanical
properties of multiphase materials, including composites, porous
and granular materials, and solids with embedded liquid and gas
phases resulting from materials processing. Evaluations are often
conducted for solids immersed in a liquid bath or coupled to a
transducer by a liquid jet for which the effects of the liquid must
be considered. In other cases air-coupled transducers are used for
which the effects of the air are important. It would thus be useful
in some analyses of acoustic wave propagation in fluid–solid media
to have available the linear (second-order) and nonlinear (third-or-
der) elastic coefficients of the fluids, since such constants provide a
common means of quantifying elastic behavior for both solids and
fluids. Although a variety of elastic constants are defined in the lit-
erature, we consider the Brugger elastic constants for present pur-
poses because of their symmetry properties and because they
provide a direct connection with thermodynamics. The Brugger
constants are defined for isentropic conditions from the internal
energy and for isothermal conditions from the Helmholtz free en-
ergy [10]. The number of independent Brugger constants also re-
flects the symmetry group of the material, ranging from 21

second-order constants and 56 third-order constants for triclinic
symmetry to two second-order constants and three third-order
constants for isotopic symmetry. Fluids are treated as a special case
of a material with isotropic symmetry.

Quite relevant to nondestructive materials characterization, a
number of researchers have used variously defined ‘nonlinearity
parameters’ to quantify the deviation of a mechanical system from
linear stress–strain behavior. The various nonlinearity parameters
are defined by the experimental techniques used to measure them
and are functionally dependent on the elastic constants, even
though the relationship to the elastic constants in some cases is
quite complicated. More importantly for present purposes, the
nonlinear elastic constants are generally obtained from measure-
ments of the nonlinearity parameters. Fox and Wallace [11],
Rudnick [12], Beyer [13], and Zarembo and Krasil’nikov [14] de-
fined parameters related to nonlinearity in fluids. Truesdell [15],
Toupin and Berstein [16], Landau and Lifshitz [17], Murnaghan
[18], Brugger [10], and Mason [19] defined various nonlinear con-
stants to describe elastic nonlinearity in bulk solids. Breazeale and
Ford [20] pointed out that certain ratios of second and third-order
Brugger elastic constants can be used to quantify acoustic har-
monic generation along the pure mode propagation directions in
initially stress-free cubic solids. Yost and Breazeale [21] defined
these ratios of elastic constants as the acoustic nonlinearity param-
eters. Cantrell [22] subsequently proposed a slightly different but
more general definition of the acoustic nonlinearity parameters
for plane wave propagation of arbitrary polarization and direction
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(propagation modes) in initially stress-free crystals of arbitrary
symmetry. He found that the nonlinearity parameters are indepen-
dently ordered for each mode according to the crystalline symme-
try and structure of the solid and explained such dependence from
a consideration of the Born–Mayer interatomic pair potentials [23].

The mechanical behavior of fluids is generally expressed by an
equation of state that links the pressure with the mass density of
the fluid. We seek to relate the second and third-order Brugger
elastic constants to the ‘elastic parameters’ in the relevant fluid
equation of state (e.g., the Beyer coefficients in the liquid equation
of state). For completeness it is necessary to include the initial
pressure in the derivation, since in some cases (e.g., ideal gases)
the initial pressure makes a substantial contribution to the equa-
tion of state. We begin in Section 2 by including initial stresses
in the Cauchy stress equation via the formalism of finite deforma-
tion theory. Since the third-order elastic constants are most often
determined from the nonlinearity parameters measured via acous-
tic harmonic generation or from the variation of the sound velocity
with applied stress (acoustoelasticity), it is instructive to obtain
expressions for the nonlinearity parameters corresponding to these
methods by generalizing the analytical expressions previously ob-
tained for the nonlinearity parameters [22–25] to include the ef-
fects of initial stresses. More importantly, the generalized
equations are necessary to provide a quantitative validation of
the relationships to be obtained in Section 3 for the elastics con-
stants of fluids. The distinction and relevance of the ‘natural’ and
‘true’ velocities to solids and fluids in assessing the nonlinearity
parameters associated with acoustoelasticity and acoustic har-
monic generation is critically discussed.

The formalism developed in Section 2 is applied in Section 3 to
the treatment of fluid media by assuming that an ideal fluid can be
represented as an isotropic material that will yield under the ac-
tion of a shear stress, no matter how small. Relationships between
the elastic constants and the ‘elastic parameters’ in the relevant
equation of state are obtained for both liquids and ideal gases by
comparing corresponding coefficients in the strain expansions of
the Cauchy relation and the equation of state. The relationships
are validated using expressions derived for the nonlinearity
parameters corresponding to acoustic harmonic generation and
to acoustoelasticity.

2. Finite deformation theory in solids with initial stress

We apply finite deformation theory to extend the definitions of
the nonlinearity parameters previously defined to quantify acous-
tic harmonic generation [22,23] and acoustoelasticity for solids
[24,25] to include the effects of initial stresses.

2.1. Finite deformation theory

The theory of finite deformations was originally developed by
Murnaghan [18] and expanded to include acoustic wave propaga-
tion by Thurston [24], Thurston and Brugger [25], Thurston and
Shapiro [26], and Wallace [27]. The initial configuration of particles
comprising a material body is denoted by the set of position vec-
tors [X], often called the material or Lagrangian coordinates of
the material. The initial configuration is generalized here to include
the effects of initial stresses in the material, if any. The present con-
figuration of the particles is denoted by the set of position vectors
[x], often called the spatial or Eulerian coordinates of the material.
The present configuration is obtained by means of an elastic defor-
mation defined by the set of transformation coefficients aij = @xi/@Xj

for small finite deformations, where xi and Xj, respectively, are the
Cartesian components of the vectors x and X. The indices i and j
take the values 1, 2, 3 representing three mutually orthogonal

spatial reference axes. If the deformation is nonuniform, as is the
case of acoustic wave propagation, the transformation is consid-
ered to be local in X and time t, i.e. x = x(X, t).

The particle displacement u is defined by u = x � X. The trans-
formation coefficients aij are related to the displacement gradients
uij = @ui/oXj as

aij ¼ dij þ uij; ð1Þ

where dij is the Kronecker delta. The deformation results in a change
in the mass density of the material given by [18]

q1

q
¼ J ¼ det½aij� ¼ 1þ ukk þ OðuijÞ; ð2Þ

where q1 = q(X) is the mass density in the initial (unperturbed)
state (configuration), q = q(x) is the mass density in the deformed
state (configuration), J is the Jacobian of the transformation defined
as the determinant of the transformations coefficients aij (note: aij

is also called the Jacobian matrix), and O(uij) are higher-order terms
in uij. The Einstein summation of repeated indices is assumed in the
present work.

The internal energy per unit mass U(x, S) of the solid depends
only on the relative positions of the particles comprising the solid
and the entropy per unit mass S. Hence, U(x, S) may be regarded as
a function of the displacement gradients uij, U(x, S) = U(X, uij, S), or
as a function of the Lagrangian strains gij, U(x, S) = U(X, gij, S),
where the gij are defined by [18]

gij ¼
1
2
ðakiakj � dijÞ ¼

1
2
ðuij þ uji þ ukiukjÞ: ð3Þ

(Note that the Lagrangian strains are symmetric but the displace-
ment gradients are generally not). Thus, we may expand the inter-
nal energy per unit mass either in Lagrangian strains or in
displacement gradients as

q1Uðx; SÞ ¼ q1UðX;gij; SÞ ¼ q1UðX;0; SÞ þ Cijgij þ
1
2

Cijklgijgkl

þ 1
3!

Cijklmngijgklgmn þ � � �

¼ q1UðX;uij; SÞ ¼ q1UðX;0; SÞ þ Aijuij þ
1
2

Aijkluijukl

þ 1
3!

Aijklmnuijuklumn þ � � � ;

ð4Þ

where Aij, Aijkl, and Aijklmn, respectively, are the first, second, and
third-order Huang coefficients and Cij, Cijkl, and Cijklmn, respectively,
are the first, second, and third-order Brugger elastic constants
[10,27]. Substituting Eq. (3) in Eq. (4), expanding the Lagrangian
strains in terms of the displacement gradients, and comparing the
coefficients of like powers of the displacement gradients, we obtain
the relations

Aij ¼ Cij ¼ TijðXÞ; ð5Þ
Aijkl ¼ TjlðXÞdik þ Cijkl ð6Þ

and

Aijklmn ¼ Cjlmndik þ Cijnldkm þ Cjnkldim þ Cijklmn: ð7Þ

The first-order constants Aij = Cij = Tij(X) are the initial stresses in the
solid. We note from Eq. (4) that the Brugger constants are com-
pletely symmetric with respect to an exchange of index pairs and
with respect to an exchange of indices within each pair, but Eqs.
(5)–(7) show that the Huang coefficient do not generally obey such
symmetries.

The stresses referred to the Eulerian (spatial) coordinates are
the Cauchy stresses Tij. The Cauchy stresses, evaluated in the pres-
ent (perturbed) configuration x, are given by [18,24,27]
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