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a b s t r a c t

Acoustic properties of different periodic structures composed of alternating fluid and fluid-saturated por-
ous layers obeying Biot’s theory are investigated. At first, the network of modes and the transmission
coefficients of finite structures of six plates are studied in the frequency-angle of incidence plane. It is
shown that the network of modes concentrates in localized domains of the plane where the transmission
coefficients will take the greatest values. With this minimum of six plates, the structures exhibit the main
features as for structures containing more plates, especially those with an infinite number of plates. Then,
considering infinite structures the band gap calculations are led using the Bloch–Floquet theorem. The
evanescent and propagative zones in the frequency-angle of incidence plane are determined. What is pro-
posed here is a class of underwater porous screens that exhibits band gaps extending over great angular
domains and enlarging in the frequency domain when the pores at the interfaces of the porous plates are
sealed. The effect of porosity on the band gaps is also investigated.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, the analysis of layered geological structures
together with the design of composite materials having specific
properties led to several papers. Schoenberg and Sen [1] applied
the method of transfer matrices [2–4] to a periodically layered
acoustic half-space to study the pass and stop bands. Rousseau
[5] applying the same method studied Bloch and Floquet [6,7]
wave properties of periodic structures of elastic solid and fluid lay-
ers. Later, Potel and de Belleval [8] extended the study to periodi-
cally layered anisotropic media. Media considered in those works
are single phase media; the waves that propagate in each medium
being neither dispersive nor attenuated.

Heterogeneous materials made up of periodic arrays of inclu-
sions in a fluid or an elastic medium have also retained the atten-
tion because of their capacity to create pass and stop bands similar
to those encountered in layered media. Band gaps are of great
interest in various domains such as the design of silent blocks
[9]. To this end, some authors presented methods to obtain large
band gaps [10,11].

In this paper, the band gaps created by underwater systems
made up of alternating porous plates and liquid layers are studied.
In the fluid saturated porous medium obeying Biot’s theory [12,13],
two longitudinal waves and one shear wave propagate that are all
dispersive and attenuated. One of the longitudinal wave is referred

to as the ‘fast wave’ while the remaining is called the ‘slow wave’.
All these waves are dispersive and attenuated, contrary to waves
propagating in single phase elastic media. When the porous med-
ium is reduced to a plate of constant thickness, Rasolofosaon [14]
showed that the slow wave generation depends on the boundary
conditions. For open pore conditions at the interfaces separating
the porous medium from the surrounding fluid, the contribution
of the slow wave to the modal waves is not negligible. At the oppo-
site, the sealing of the pores at the interfaces provokes the disap-
pearance of the slow wave which becomes diffusive at all
frequencies. As it will be shown below, for the formation of acous-
tic band gaps with systems of several plates, the sealing case is the
more interesting among the two kinds of boundary conditions in so
far as one is interested chiefly by the creation of the largest band
gaps. To this end, approximate expressions for reflection and trans-
mission studies of porous plates with sealed pores are briefly re-
called in Section 2.

In Section 3, a comparison between exact and approximate re-
sults obtained for reflection and transmission coefficients of sys-
tems with six equidistant plates is presented. This number of six
plates, although not rigorously fixed, allows to exhibit the main
features as for structures containing more plates, especially those
with an infinite number of plates. Section 4 deals with the band
gap phenomena for infinite periodic systems of alternating fluid
and porous plates. Both cases of sealed and open pores at the inter-
faces are presented. Since one is concerned here with absorbing
media and dispersive waves in a porous medium, the methods
and approximations based upon the assumption of perfect media
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as in Ref. [5]no longer apply. The equation used for the computa-
tion of the Bloch–Floquet wavenumber is similar to that used by
Heckl [9] to study sound propagation in periodically arranged
cylindrical tubes and by Ashcroft and Mermin [15] in solid state
physics. It is used to find the expression of first critical frequency
at which the first band gap will occur at normal incidence. The
knowledge of such frequency brings some information on the per-
tinent parameters to modify for lowering it. In Section 5, the effects
of a decrease or an increase of the porosity on the band gaps loca-
tion are studied.

2. Background

Let us consider a plane parallel poroelastic plate with a thick-
ness d, saturated and surrounded by water. The faces are identi-
cally surfaced (either open pores or sealed pores). One way to
obtain plates with sealed pores is described in [16]. Let r and t be
the reflection coefficient (back into the fluid) and transmission
coefficient (at the rear) when a plane monochromatic wave with
angular frequency x hits the plate at an angle h with respect to
the normal to the faces. They can be expressed as in [17] and then
computed. However, because of the greatest performances ob-
served in the separation the Lamb modes into two sets, symmetric
(S) and antisymmetric (A) ones, the transition terms

T ð1ÞS ¼
1
2i
ðr þ t � 1Þ; T ð1ÞA ¼

1
2i
ðr � t � 1Þ; ð1Þ

are introduced here. They are better tools than reflection and trans-
mission coefficients for both experimental and theoretical studies.
It must be noticed that the expressions obtained for the exact
reflection/transmission coefficients, see Eqs. (33–38) and (41–46)
of [17] are not easy to handle. Consequently, for systems involving
the association of several plates it is more convenient to consider
approximate formulas. For single plates with sealed pores, that
are the basis of the systems studied below the following approxi-
mations are recalled

T ð1ÞS sealed ffi
s
�1

CS1 � i s
�1

; T ð1ÞA sealed ffi
s
�1

CA1 þ i s
�1

ð2Þ

Details on the terms CA1, CS1 and s
�1

are given in the Appendix (see
also Eqs. (63) and (66) of [17]). The subscript 1 recalls that only the
fast wave is involved whereas the superscript (1) indicates that only
one plate is involved. The slow wave (terms with the subscript 2)
normally present in a Biot’s medium, becomes effective only from
the second order of the approximation neglected here in accordance
with the fact proved experimentally [14,16] that the sealing of the
pores at the boundaries reduces drastically the amplitude of the
transmitted slow wave. The transition terms, Eqs. (2), allow the
description of modes similar to the well known (A) and (S) modes
of immersed elastic plates since only the fast and the shear waves
are involved. Note that the combination of Eqs. (1) and (2)yields r
and t in terms of T ð1ÞS and T ð1ÞA .

Since the waves that travel in the porous medium are disper-
sive, the critical angles, hc1 for the fast wave and hct for the shear
wave are frequency dependent. The use of the parameters of Ta-
ble 1 shows that the critical angles decrease slightly when the fre-
quency increases lying however in the bounds 24�8 � hc1 6 26�

and 45�2 � hc1 6 48�2. There is no critical angle for the slow wave.

3. Finite periodic systems of plates

Several plane identical plates are periodically spaced in a liquid
(water) of infinite extent in which sound propagates with the
velocity c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0=q0

p
; K0 is the bulk modulus and q0 the density

(see Table 1). Two consecutive plates enclose a liquid layer of

thickness D; the spatial period is then equal to d + D. When a wave
traveling from the surrounding liquid impinges one of the outer
plates at the angle of incidence h, the system of N P 2 plates gives
rise to reflected waves, transmitted waves and to forward and
backward waves between two consecutive plates. The reflection
and transmission coefficients rN and tN by the system of N plates
can be calculated using the following recurrence formulas

rN ¼ rN�1 þ
t2

N�1re�iur

1� r rN�1e�iur
; ð3Þ

tN ¼
t tN�1e�iur=2

1� rrN�1e�iur
; ð4Þ

where ur = 2k0D cosh is a phase difference. The factor k0 = x/c0 rep-
resents the wavenumber in the liquid surrounding the plates. To
have an idea of the modes produced by a system with N = 6 plates,
and especially of the differences generated by the boundary condi-
tions (open or sealed pores), we use the transition terms
T ð6ÞS ¼ ðr6 þ t6 � 1Þ=2i:

3.1. Sealed pores

A spacing D ¼ 1 cm is considered between plates (of thickness
d ¼ 0:5 cm). The modulus of the transition terms T ð6ÞS are presented
in the (fd, sinh) plane, in Fig. 1 for the exact case, in Fig. 2 for the
approximate case calculated from Eq. (2). The very good agreement
between the two networks of modes (white lines) legitimates the
use of the approximations given by Eq. (2) for computing transition
terms of structures with a greater number of plates and even for
periodic structures. In comparison, Fig. 3 which represents the

Table 1
QF20 and saturating water parameters (all data from Johnson et al. [16] except pore
radius estimated by us).

Bulk modulus of grains Kr (Pa) 36.6 � 109

Dried frame bulk modulus Kb (Pa) 9.47 � 109

Dried frame shear modulus l (Pa) 7.63 � 109

Solid density qs (kg m�3) 2760
Bulk modulus of water K0 (Pa) 2.22 � 109

Density of water q0 (kg m�3) 1000
Viscosity of saturating water g (kg m�1 s�1) 1.14 � 10�3

Porosity b 0.402
Permeability k (m2) 1.68 � 10�11

Pores radius ap (m) 3.26 � 10�5

Tortuosity a 1.89

Fig. 1. Sealed pore condition. The modulus of the exact T ð6ÞS with a spacing D ¼ 1 cm
between plates. The lightest zones correspond to the highest magnitudes. The
positions of kx corresponding to critical angles are indicated by dot horizontal lines.
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