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a b s t r a c t

The equilibrium radius of a single spherical bubble containing both non-condensable gas and vapor is
determined by the mechanical balance at the bubble interface. This expression highlights the fact that
decreasing the ambient pressure below the so called Blake’s critical threshold, the bubble has no equilib-
rium state at all. In the last decade many authors have tried to find evidence for the existence of stable
bubble oscillation under harmonic forcing in this regime, that is, they have tried to stabilize the bubble
motion applying ultrasonic radiation on the bubble. The available numerical results provide only partial
proof for the existence as they are usually based on linearized or weakly nonlinear (higher order approx-
imation) bubble models. Here, based on numerical techniques of the modern nonlinear and bifurcation
theory, the existence of stable bubble motion has been proven without any restrictions in nonlinearities.
Although the model, applied in this paper, is the rather simple Rayleigh–Plesset equation, the presented
technique can be extended to more complex bubble models easily.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The equilibrium radius of a gas- and/or vapor-filled spherical
bubble is characterized by the well-known static mechanical equi-
librium at the bubble interface. For a given mass of gas mG and
ambient temperature T1 it is written as

0 ¼ pV � P1 þ pgo
Ro

RE

� �3n

� 2r
RE

; ð1Þ

where RE is the equilibrium bubble radius, rðT1Þ is the surface ten-
sion, pV ðT1Þ is the vapor pressure and P1 is the static ambient pres-
sure far away from the bubble. The reference pressure and radius
and the exponent of the polytropic state of change are pgo;Ro and
n, respectively. The reference quantities determine the mass of
gas within the bubble:

mG ¼
4pgoR3

op
3RT1

; ð2Þ

where R is the specific gas constant. Observe that Eq. (2) corre-
sponds to equilibrium conditions, thus, the constant ambient tem-
perature T1 does not imply isothermal gas behavior.

Typical equilibrium bubble radius curves are presented in Fig. 1
for water at T1 ¼ 37 �C. The stable Rs

E and unstable Ru
E radii are

marked by the solid and dashed lines, respectively. If the bubble
interior contains non-condensable gas beside the vapor, that is,
mG > 0 than a turning point appears in the equilibrium radius

curve called Blake’s critical threshold, which first identified by
Blake [6] and later on Neppiras and Noltingk [23], see the back
dot in Fig. 1. Throughout this paper the equilibrium radius at this
critical point will be referred to as critical radius RC . It is important
to emphasize that beyond Blake’s threshold there is no equilibrium
state of the bubble. In the absence of foreign gas (mG ¼ 0), how-
ever, no stable equilibrium exists at all, resulting in an infinite
growth or a total collapse of the vapor bubble for all values of
the ambient pressure. The above-described graphical representa-
tion was used by Daily and Johnson [8] and a thorough discussion
of the equilibrium state of a bubble can also be found in Brennen
[7].

Although the above description excludes the existence of stable
vapor bubbles, the experiment of Marston and Greene [20] re-
ported the observation of stable microscopic vapor bubbles under
a harmonically varying pressure field, discovering the fact that
ultrasonic radiation may stabilize the bubble motion. The authors
also concluded that the stability may be influenced by the previ-
ously found second (evaporation–condensation) resonance. Beside
the so-called Minnaert primary resonant frequency [21] this sec-
ond resonance frequency was first reported by Neppiras and Finch
[22] in vapor bubbles for a given equilibrium radius. Their observa-
tion was supported by other authors, see Wang [29] or Wang [30].
The discovery of this phenomenon had triggered an increasing
attention of the researchers on the subject. Several versions of ana-
lytical approximations for this second resonance were proposed,
with different degrees of complexity, by Patel et al. [27], Marston
[19], Hsieh [16], Akulichev [1], Alekseev [2] and many others. Since
these studies are based on first or second order approximations,
their results are limited only to small amplitude oscillations.
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These results encouraged Hao and Prosperetti [12] to solve a
relatively complex bubble model numerically, without any linear-
ization or other approximations, to verify the predictions of the lin-
ear theories and try to achieve stable bubble oscillations under
harmonic forcing. Unfortunately, they could not find any stable
oscillation even after thousands of cycles. A thorough analysis of
Gumerov [10] provided a detailed explanation on the stability of
vapor bubbles and revealed that in the parameter range applied
by Hao and Prosperetti [12] there is no stable bubble oscillation.

The valuable results of Gumerov [10] proved that may be possi-
ble to stabilize a vapor bubble with harmonic forcing even if there
is no any stable equilibrium or any equilibrium solution of the
unexcited system. However, the question of this stabilization
mechanism for large amplitude (nonlinear) oscillations is still open
due to the applied third order approximation. The exponentially
increasing computational resources, the rapidly developing and
spreading nonlinear theory and its numerical techniques could
help to overcome the problem. Still, the majority of the corre-
sponding papers of the topic use less sophisticated techniques,
such as the so-called brute force method, hence often miss the
chance to find stable solutions, see again Hao and Prosperetti
[12]. Even if some authors make use of the benefit of the advanced
numerics the applied parameter values are simply out of the range
of interest, see Parlitz et al. [25], Simon et al. [28], Behnia et al.
[3–5]. In these cases the bubble contains non-condensable gas
ðmG > 0Þ and the ambient pressure is so high that stable bubble
oscillations always exist (far below Blake’s critical threshold).
One of the most recent review paper summarizing the achieve-
ments of nonlinear dynamics on bubble oscillations is written by
Lauterborn and Kurz [18].

The main aim of this study is to prove that periodic forcing can
stabilize the bubble motion even if there is no stable bubble
equilibrium or any equilibrium radius of the unexcited system.
Although the employed bubble model is rather simple, the
well-known Rayleigh–Plesset equation, there is no restriction (lin-
earization or other reduced order modelling) on our numerical
technique. This means that the results are valid also for large
amplitude oscillations, of course within the accuracy of the physi-
cal modelling. The surrounding of the bubble is pure water and the
bubble content is a mixture of water vapor and non-condensable
gas ðmG > 0Þ. Therefore, the region where stable equilibrium does
not exist lies beyond Blake’s critical threshold, see Fig. 1. The
procedure described here to find stable solutions can be easily

applied to more complex models and for pure vapor bubbles
ðmG ¼ 0Þ.

2. Mathematical model

The model describing the evolution of the bubble radius in time
is rather simple. Integrating the one dimensional Navier–Stokes
equation (incompressible liquid) from the bubble radius RðtÞ to
infinity making use of the equation of continuity, one can obtain
the equation

R€Rþ 3
2

_R2 ¼ 1
qL

pL � p1ð Þ ð3Þ

known as the Rayleigh–Plesset equation which is a second order or-
dinary differential equation. Here, qL is the density of the liquid, pL

is the pressure at the bubble wall in the liquid domain and p1 is the
pressure far away from the bubble consisting of static and periodic
components written as

p1ðtÞ ¼ P1 þ pA sinðxtÞ; ð4Þ

where P1 is the ambient pressure, pA and x is the pressure ampli-
tude and angular frequency of the excitation, respectively. The bub-
ble interior contains both vapor and non-condensable gas assuming
ideal gas behavior. The pressure of this ideal mixture is composed
by the sum of the partial pressure of vapor pV and the gas pG. The
connection between the pressure inside and outside the bubble at
the bubble interface is expressed by the mechanical balance

pG þ pV ¼ pL þ
2r
R
þ 4lL

_R
R
; ð5Þ

where r is the surface tension and lL is the liquid dynamic viscos-
ity. The vapor pressure inside the bubble is constant but its value
depends on the ambient temperature T1 while the gas content
obeys a simple polytropic relationship

pG ¼ pgo
Ro

R

� �3n

ð6Þ

with a polytropic exponent n. Although n can vary between 1 and
1.4 (isothermal and adiabatic behavior), this study follows the con-
cept of Lauterborn and Kurz [18] and n ¼ 1:4 was applied. The ref-
erence pressure pgo and radius Ro determine the mass of gas inside
the bubble, see Eq. (2). The material properties of the liquid domain
(water) and the water vapor inside the bubble were computed by
means of the Haar–Gallagher–Kell equation of state (see [11]) at
T1 and P1, whose values are discussed in the next subsection.

2.1. Parameters and their transformations

Before presenting any specific computations, let us summarize
the parameters needed to specify in the model. This paper follows
the idea dealing with the large number of parameters, first pro-
posed by Heged}us et al. [13], based on the fact that the material
properties of a pure substance depend on the pressure P1 and tem-
perature T1. Regarding these two quantities as independent
parameters, all the material properties can be determined, hence,
the number of parameters can be significantly reduced, especially
in complex bubble models. Beside the ambient properties a further
parameter for the description of the bubble size is still needed. This
can be, for instance, the mass of gas within the bubble ðmGÞ, the
equilibrium bubble radius ðREÞ or the critical radius (RC , see the
investigation below). Finally, in the presence of harmonic forcing
the pressure amplitude pA and angular frequency x are also
required.

First, let us discuss the description of the bubble size. The mass
of gas mG is not an illustrative measure. The equilibrium radius RE
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Fig. 1. Typical equilibrium bubble radius curves for water at T1 ¼ 37 �C. The solid
and dashed lines are the stable and unstable equilibrium radius curves, respec-
tively. The thick dashed curve corresponds to pure vapor bubbles, whereas in the
case of the thin curve the bubble interior contains both vapor and foreign non-
condensable gas. The black dot denotes the so-called Blake’s critical threshold.
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