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a b s t r a c t

The control problem in ultrasound therapy is to destroy the tumor tissue while not harming the interven-
ing healthy tissue with a desired temperature elevation. The objective of this research is to present a
robust and feasible method to control the temperature distribution and the temperature elevation in
treatment region within the prescribed time, which can improve the curative effect and decrease the
treatment time for heating large tumor (P2.0 cm in diameter). An adaptive self-tuning-regulator (STR)
controller has been introduced into this control method by adding a time factor with a recursive algo-
rithm, and the speed of sound and absorption coefficient of the medium is considered as a function of
temperature during heating. The presented control method is tested for a self-focused concave spherical
transducer (0.5 MHz, 9 cm aperture, 8.0 cm focal length) through numerical simulations with three con-
trol temperatures of 43 �C, 50 �C and 55 �C. The results suggest that this control system has adaptive abil-
ity for variable parameters and has a rapid response to the temperature and acoustic power output in the
prescribed time for the hyperthermia interest. There is no overshoot during temperature elevation and no
oscillation after reaching the desired temperatures. It is found that the same results can be obtained for
different frequencies and temperature elevations. This method can obtain an ellipsoid-shaped ablation
region, which is meaningful for the treatment of large tumor.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In high-intensity focused ultrasound (HIFU) surgery, the heating
effect of ultrasound is used to cause lesions and coagulate the can-
cerous tissue, and the temperature of the cancerous tissue is raised
up to 50–90 �C for several seconds [1,2]. One important issue is that
the heat produced by HIFU should be controlled selectively to ob-
tain a desired temperature distribution in the treatment area, and
the temperature in healthy tissue should stay within 43 �C. A vari-
ety of control and optimization methods has been proposed to con-
trol the temperature in tissue. These methods include for example
standard proportional–integral–derivation (PID) [3], linear qua-
dratic regulator (LQR) [4], inverse dynamics [5], fuzzy logic [6]
and model predictive control (MPC) [7] approaches. In addition,
an adaptive self-tuning-regulator (STR) controller has attracted
much attention and is used for ultrasound hyperthermia system
[8–10]. The STR is an adaptive controller, which can specify the
structure of model and corresponding parameters with a recursive
least square estimation (RLSE) method and automatically converge

the actual output to the desired temperature. To ensure reliable
temperature control, another important issue for HIFU surgery is
the understanding the change of acoustical properties at higher
temperatures (50–100 �C). Tissue properties such as sound speed
and absorption coefficient would change with temperature during
the course of a single focused ultrasound treatment [11,12]. For
example, absorption coefficient increased at temperatures higher
than 50 �C, The rate of change of tissue attenuation as a function
of temperature was between 0.239 and 0.291 Np/(m MHz �C) for
muscle, liver, and kidney, respectively [11]. However, there is little
documentation concerning the effect of change of tissue properties
on temperature control.

Our earlier works demonstrated the feasibility of a stationary
temperature profile obtained with the STR [10]. In the present
paper, we extend these studies by adding a time factor to the STR
controller with a recursive algorithm. This goal is to control the
temperature elevation in specified time during HIFU heating. Thus
it can give a reasonable time frame for heating large tumor (P2 cm
in diameter). Simultaneously tissue properties such as absorption
coefficient and speed of sound are taken into account and are as a
function of temperature during heating with a self-focused concave
spherical transducer. The control system performance is evaluated
with 1D simulation.
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In this article, we firstly describe the spheroidal beam equation
(SBE) and the finite Fourier integral transformation to the bioheat
equation and control method. Then, the simulations of tempera-
ture control and acoustic output power response are performed
using the theory and method introduced. We give a discussion
and summarize our studies finally.

2. Theory and methods

2.1. Spheroidal beam equation (SBE)

Almost all the work begins with the Khokhlov–Zabolotskaya–
Kuznetsov (KZK) equation [13,14] that is extensively used as a
model equation for describing the combined effects of diffraction,
absorption, and nonlinearity in directional beams. The KZK equa-
tion is derived under the paraxial approximation. Therefore, its
applicability to focused beams is limited to small opening angles
of aperture. Another paraxial approximation algorithm is time-
averaged wave envelopes (TAWEs) method [15] which can predict
nonlinear beam propagation based on the solution of the second
order nonlinear differential wave equation [16,17] for lossy media,
arbitrarily shaped plane and focused sources. But its computation
time depends on several parameters, including the source geome-
try, dimensions, fundamental resonance frequency, excitation level
as well as the strength of the medium nonlinearity. The spheroidal
beam equation (SBE) [18] is a parabolic equation using an oblate
spheroidal coordinate system [19] and has a specific application
to a theoretical prediction on focused, high-frequency beams from
a circular aperture, whose upper limit of the applicability is at least
40� for the half-aperture angle. It is feasible through a finite differ-
ence scheme and takes no more than 10 min of run time to obtain
all harmonic components using a standard PC. Fig. 1 shows the ob-
late spheroidal coordinate system, in which the variables (r, g, u)
are related to the rectangular coordinates (x, y, z) by
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with �1 < r <1, 0 6 g 6 1, 0 6 u < 2p, where 2 b is the interfocal
length. The focused field is usually divide into two regions, i.e.
r < r0 < 0 and r0 6 r, where r = r0 (=const < 0) denotes a specific

transition location. The former region is close to the source where
spherically converging waves are predominant and the spherical
coordinates are preferable to the rectangular ones for field analysis;
the latter region is near the focus where the paraxial or planar par-
abolic approximation is useful. For each region, different retarded
time is introduced to observe progressive waves in a frame moving
with speed c. In terms of r, g, and h, the Westervelt equation [20]
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can be reduced to the nonlinear SBE and is described as below [18]

@2�p
@ss@r

þ 1
2

sin 2h
rð1þ r2Þ

@2�p
@ss@h

þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � sin2 h

p
rð1þ r2Þ

� @2�p

@h2 þ cot h
@�p
@h

 !
þ E

r
@�p
@ss

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ sin2 h

p
r

� ab
@3�p
@s3

s
þ b

2lD

@2�p2

@s2
s

 !
E ðr < r0 < 0Þ ð3Þ

@2�p
@sp@r

� r
1þ r2 sin h

@2�p
@sp@h

� eð2� cos hÞ
1þ r2 � @2�p

@h2 þ cot h
@�p
@h

 !

¼ ab
@3�p
@s3

p
þ b

2lD

@2�p2

@s2
p

 !
E ðr � r0;r0 < 0Þ ð4Þ

Here r0 is a specific transition location where we can transform
from the spherical to plane wave region, and
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where c is sound speed, q0 is the ambient density of medium, x is
the angular frequency of ultrasound, d is the sound diffusivity, a is
the attenuation, b is the nonlinear coefficient of medium, p0

(1.013 e5 Pa) and p are the amplitude of sound pressure on the
source face and in the medium, respectively. Parameters a and c
for all calculations are the variables relating to the temperature.

2.2. The finite Fourier integral transform to bioheat equation

Once the pressure is determined with Eqs. (3) and (4), the heat
transfer in tissue from the ultrasound field is determined by apply-
ing Pennes’ bioheat transfer equation (BHTE) [21]:

qtCt
@T
@t
¼ Ktr2T �WbCbðT � T1Þ þ Q ð6Þ

where T is the tissue temperature; qt, Ct, and Kt are the density, heat
capacity, and thermal conductivity with the subscripts t and b refer-
ring, respectively, to tissue and blood domain; T1 refers to the tem-
perature at large distance from the acoustically induced thermal
lesion, which corresponds to the initial condition value of 37 �C.
The first term on the right-hand side of (6) accounts for heat diffu-
sion; the second term of (6) is responsible for blood perfusion
losses, with Wb being the perfusion rate. The term Q is the rate of
heat production per unit volume due to the ultrasonic field. The
three dimensional representation of this equation in Cartesian coor-
dinates is:

qtCt
@T
@t
¼ Kt

@2T
@x2 þ

@2T
@y2 þ

@2T
@z2

 !
�WbCbðT � T1Þ

þ Qðx; y; z; tÞ ð7ÞFig. 1. Oblate spheroidal coordinate system.
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