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a b s t r a c t

Spatial steady-state Lamb wave propagation in an anisotropic composite plate excited by harmonic sur-
face sources is modeled using a Green’s matrix representation in a frequency-wavenumber domain. An
approach based on a residue integration technique for two dimensional wavenumber integrals for the
computation of displacements outside an excitation source is presented in this paper. In the far-field zone
of the excitation source, the method of stationary phase is used, which gives an asymptotic expansion of
the displacement vector as a sum of cylindrical waves. Near caustic directions, a far-field solution is com-
puted in terms of Airy functions. The results obtained applying residue integration technique and asymp-
totic expansion are found to be coinciding with the results of the computation by using the adaptive
quadratures. Moreover, these approaches agree well with experimental data. Then, the advantages and
disadvantages of the various methods applied for modeling of Lamb wave propagation are discussed in
this paper. Focussing and other properties of Lamb waves are studied using numerical examples.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there has been an obvious tendency to widely
use composites in different branches of engineering and industry.
The basic advantage of composites is their higher strength relative
to mass in comparison with metals. Moreover, composites have
higher corrosion stability. At the same time, composites are more
sensitive to impact actions, which can cause damages in the form
of cracks or delaminations which could potentially result in
destruction. Defects in composite materials are promised to be
identified applying the methods based on the use of elastic Lamb
waves [1] propagating in structures under surface excitation [2].

Studies of surface-excited waves in multilayered structures have
received high attention in the last 20 years. Waveguides are
frequently modeled in two dimensions [3] for understanding many
aspects of wave propagation in full three dimensions. However,
modeling in 2D requires that waves are excited by sources whose
distribution is infinitely expanded in the direction perpendicular
to the cross-section. To accurately model a finite-source induced
wave propagation, a 3D formulation is required [4]. Besides using
Finite Differences (FDs) [5], conventional FEM [6] and its modifica-
tions (spectral FEM, semianalytical finite element method (SAFEM),
the strip element method (SEM)), and the hybrid numerical method
and modal expansion technique [7], several techniques dealing

with the construction of the solution in the wavenumber-frequency
domain and its inverse transformation into real space coordinates
are considered. The analysis of wave propagation in three-dimen-
sional structures requires at first the construction of the Green’s
matrix in the wavenumber-frequency domain and the investigation
of dispersion properties. For the modeling of multilayered struc-
tures based on elasticity theory, the global matrix and transfer ma-
trix methods [3,8,9], excitability matrices [4] or the Green’s matrix
of a multilayered plate can be used [10]. Inversion of expressions
obtained in a 3D formulation in the transformed domain requires
the computation of a double integral over wave numbers and a
one-dimensional integral over frequencies. The time response is ob-
tained through the frequency inversion of the Fourier transform
using fast Fourier transform.

The most time-consuming procedure is the computation of the
double integral over wave numbers, which causes difficulties such
as integral singularity near real poles of Green’s matrix, strong
oscillations of the integrand and significant time expenses. Never-
theless, in the near- and middle-field of an excitation source, con-
tour integrals of the inverse Fourier transform can be evaluated
directly using some techniques for the computation of oscillatory
integrals [11] or using adaptive two-dimensional numerical inte-
gration schemes [3,12]. But the computational costs are still con-
siderable. Another disadvantage lies in the fact that the wave
structure of the solution using these techniques is not taken into
account and the wave field can not be analyzed for each Lamb
wave mode separately.

Other methods for the computation of double wavenumber
integral are based on the residue theorem, which allow to reduce
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computational costs considerably and to analyze the contribution
of each Lamb wave mode. Wave propagation from surface-bonded
piezoelectric actuators in an isotropic plate is considered in [13,8]
using a residue theorem. A similar approach is originally offered for
isotropic media in the case of an axisymmetric load [14]. When
computing a wave propagation from surface-bonded piezo-actua-
tors in an anisotropic layered plate, the authors in [8] substituted
the integration along the positive real semi-axis by an integration
along the whole real axis. The inverse transform is as before eval-
uated using the residue theorem. The double integral over wave
numbers is reduced in [15] by the use of contour integration and
the residue theorem to a one-dimensional integral, which is then
computed numerically using standard quadratures. In [4] a far-
field asymptotic expansion of related two-dimensional wavenum-
ber integrals in terms of the modal solutions to the forced 2D
problem is presented, whereas in [16] a far-field asymptotic
expansion is obtained for the solution based on the Green’s matrix
of the composite plate [10]. Despite many publications referenced
here, wave propagation from common types of sources of finite
size anisotropic layered composites has not yet been completely
analyzed. On of the main problems in these works is not accurate
far-field solution of the problem near to caustics, where asymptotic
expansions [4,16] doesn’t work, moreover, in both works [4,16] no
accurate solution in a middle field is provided.

In this paper harmonic wave propagation in a layered aniso-
tropic plate with arbitrary anisotropy and arbitrary spatial orienta-
tion of each layer is studied. In the wavenumber-frequency
domain, the solution of the problem is expressed in terms of Fou-
rier transforms of the Green’s matrix [10] and the surface load vec-
tor. For the computation of the inverse Fourier transform two
techniques are used. The first one represents the displacements
in terms of propagating modes, where all modes (propagating
and evanescent) are taken into account. This technique imposes
some restrictions on the type of loads; nevertheless, some practi-
cally important types of surface sources can be considered using
this technique, e.g. the cases of circular and rectangular surface
piezo actuators in [8,13]. The presented procedure for the compu-
tation of the wavenumber integral is in part similar to the one de-
scribed in [15]. A significant difference lies in the fact that real
singularities of the Fourier transform of the Green’s matrix in
[15] are analyzed in Cartesian coordinates, while in the present pa-
per they are considered in polar coordinates. The second technique
consists in applying the method of stationary phase to expressions
obtained with the previous technique. It yields a far-field asymp-
totic solution for waves excited by surface sources of finite size
similar to those obtained for point sources in [4]. The results ob-
tained are validated by comparisons with results computed using
a polynomial interpolation of the Green’s matrix along the contour
in the complex plane and an explicit evaluation of the contour inte-
gral [11]. Also a well coincidence of results obtained applying sug-
gested in this paper techniques based on a residue theorem with
experimental results from [17] is observed. The properties of Lamb
wave propagation important for structural health monitoring
(SHM) are discussed using numerical examples. The differences
of the provided representations to other known solutions are also
discussed. Another result of this paper consist in the accurate Airy
function-based representation of the far-field solution of the wave
propagation problem near to caustic directions.

2. Problem statement

In this paper the harmonic motion of a layered semi-infinite
composite plate �1 6 x1; x2 61; xðnþ1Þ

3 6 x3 6 xðnÞ3 , n ¼ 1;N;
xð1Þ3 ¼ 0; xðNþ1Þ

3 ¼ �h is considered. The value of h is the total thick-
ness of the laminate (Fig. 1a). The wave propagation in each layer is

given [18] by the following equations in global coordinates x1, x2, x3

in the frequency domain (the common factor exp (ixt) is omitted
everywhere):

@rðnÞjk

@xk
þ qðnÞx2uðnÞj ¼ 0; ð1Þ

rðnÞij ¼ CðnÞijkm

@uðnÞm

@xk
; ð2Þ

where i, j, k, m = 1, 2, 3, n ¼ 1;N; rðnÞij are the coordinates of the

stress tensor, uðnÞj are the components of the displacement vector,

q(n) is the material density, CðnÞijkm are the coordinates of the stiffness
tensor, N is the number of layers, x is the angular frequency. It
should be noted that the layers can have different thicknesses.
The forms of global spatial coordinates x1 = x, x2 = y, x3 = z are as-
sumed to be equivalent. Here and elsewhere, unless otherwise spec-
ified, the rule of summation over repeated indices is used, and the
upper index n denotes the number of the layer.

The waves in a structure are excited in a bounded domain X of
the plane z = 0 (see Fig. 1a), where the surface stresses are assumed
to be known

rð1Þj3 ¼ qjðx; yÞ expð�ixtÞ; ðx; yÞ 2 X; ðj ¼ 1;2;3Þ: ð3Þ

The lower boundary z = z(N+1) = �h of the layered composite is
traction-free

rðNÞ13 ¼ rðNÞ23 ¼ rðNÞ33 ¼ 0: ð4Þ

After the Fourier transform with respect to the coordinates x, y
is applied, the solution of the boundary value problem (1)–(4) can
be represented in the frequency-wavenumber domain (x,a1,a2) as

UðnÞi ðx;a1;a2; zÞ ¼ KðnÞij ðx;a1;a2; zÞQjða1;a2Þ; i; j ¼ 1; 2; 3: ð5Þ

Here KðnÞij ðx;a1;a2; zÞ ¼ F xy kðnÞij ðx; x; y; zÞ
h i

is the Green’s matrix of

the nth layer in the multilayered structure in the wavenumber
domain. The vector Q with components Qjða1;a2Þ ¼ F xy½qjðx; yÞ� is
the load vector q(x,y) in the wavenumber domain. An algorithm
to evaluate the Green’s matrix in the frequency-wavenumber
domain is described in detail in [10]. Similar procedures are also
given in [3,8] using a transfer matrix method. Hereafter the param-
eters x, z and n are assumed to be fixed, and the dependence of the

Green’s matrix Kijða1;a2Þ � KðnÞij ðx;a1;a2; zÞ and the displacements

Uiða1;a2Þ � UðnÞi ðx;a1;a2; zÞ on these parameters is assumed to be
implicit. Without loss of generality, the expressions below are valid
for all values of these parameters (except for the static case x = 0).

To obtain the displacement vector u, it is necessary to apply the
inverse Fourier transform to the displacements U computed in the
wavenumber domain:

uðx; yÞ ¼ 1
4p2

Z
C1

Z
C2

Kða1;a2ÞQ ða1;a2Þe�i a1xþa2yð Þda1da2; ð6Þ

or in polar coordinates assuming x = r cos u, y = r sin u,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and a1 ¼ a cos c; a2 ¼ a sin c; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2

q
as

uðr;uÞ ¼ 1
4p2

Z 2p

0

Z
CþðcÞ

Kða; cÞQ ða; cÞe�iar cosðc�uÞadadc: ð7Þ

In this case, we assume that c is real, c 2 [0,2p], and a can also
possess complex values. In formulas (6, 7), the symbols C1, C2 and
C+(c) denote the integration contours, which partially deviate from
the real axis while bypassing the real poles of the Green’s functions
Kij in accordance with the principle of limiting absorption [4,14].
This principle ensures physical meaning and uniqueness of the gi-
ven solution. According to this principle, positive real poles of

284 A. Karmazin et al. / Ultrasonics 53 (2013) 283–293



Download	English	Version:

https://daneshyari.com/en/article/10690614

Download	Persian	Version:

https://daneshyari.com/article/10690614

Daneshyari.com

https://daneshyari.com/en/article/10690614
https://daneshyari.com/article/10690614
https://daneshyari.com/

