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Abstract—For nearly 100 y in the study of cyclical motion in materials, a particular phenomenon called ‘‘linear
hysteresis’’ or ‘‘ideal hysteretic damping’’ has been widely observed. More recently in the field of shear wave elas-
tography, the basic mechanisms underlying shear wave losses in soft tissues are in question. Could linear hysteresis
play a role? An underlying theoretical question must be answered: Is there a real and causal physical model that is
capable of producing linear hysteresis over a band of shear wave frequencies used in diagnostic imaging schemes?
One model that can approximately produce classic linear hysteresis behavior, by examining a generalizedMaxwell
model with a specific power law relaxation spectrum, is described here. This provides a theoretical plausibility for
the phenomenon as a candidate for models of tissue behavior. (E-mail: kevin.parker@rochester.edu) � 2015
World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

New imaging approaches have made it possible to infer
tissue properties from shear wave measurements at low
frequencies (40–1000Hz). This has led to renewed interest
in the low-frequency visco-elastic properties of normal and
diseased tissues (Asbach et al. 2008; Barry et al. 2012,
2014a; Carstensen and Parker 2014; Catheline et al.
2004; Chen et al. 2013a, 2013b; Deffieux et al. 2009;
Kruse et al. 2000; Salameh et al. 2007). We are in the
early stages of understanding shear wave propagation in
soft tissues such as the liver, and a recent review paper
asked if a linear hysteresis mechanism could contribute
to the observed lossy behavior (Carstensen and Parker
2014). For nearly a century, in a variety of situations
from the movement of soil to waves in metals, it has
been recognized that the energy dissipation during cyclical
motion can increase as the first power of frequency, over an
extended frequency range (Kimball and Lovell 1927;
Mason and McSkimin 1947; Wegel and Walther 1935).
That implies that the losses per cycle are constant over
many octaves, and this behavior has been called linear
hysteresis, or ‘‘ideal hysteretic damping’’ (De Silva

2007), a hypothetical loss element or process that creates
a constant phase lag between stress and strain over all fre-
quencies (Crandall 1997; Mason 1950; Theodorsen and
Garrick 1940). In the early 20th century, linear hysteresis
effects were thought to be prominent across a diverse
range of materials and conditions. Kimball and Lovell
(1927) at GE Laboratories reported that hysteresis was
found ‘‘over a considerable frequency range’’ and ‘‘for a
number of solids of very different physical properties.’’
Later, Mason stated that ‘‘the component proportional to
frequency is the same as observed for most metals and
solid materials at low frequencies, and indicates the pres-
ence of an elastic hysteresis’’ (Mason and McSkimin
1947). Fung (1981:chs 7, 8) considered relaxation models
that approximate linear hysteresis for viscous biomaterials.
The issue of linear hysteresis is of continuing importance
in a diverse set of areas, including earthquake motion
and damping of structures (Makris and Zhang 2000;
Nakamura 2007) and, possibly, in shear wave
propagation in biomedical tissues (Carstensen and Parker
2014). We emphasize that in this Technical Note we are
not referring to the generic loading/unloading hysteresis
that is exhibited by all lossy materials, but are specifically
considering the special frequency-independent behavior
called ‘‘linear hysteresis’’ and other closely related names
(Caughey 1962; Crandall 1997; De Silva 2007; Inaudi and
Kelly 1995; Mason 1950; Muravskii 2004).
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Despite the simplicity of the classic, idealized fre-
quency domain description of linear hysteresis, it has
been difficult to find a practical, real, causal time domain
impulse response that produces hysteresis, and this prob-
lem has been the subject of numerous articles over the
past decade (Nakamura 2007).

The Kramers–Kronig relationship links and con-
strains the relationship between the real and imaginary
parts of a transfer function in the frequency domain,
based on the constraint that the impulse response of a
material is a real and causal function (Nachman et al.
1990; Nasholm and Holm 2011; Szabo 1995; Szabo
and Wu 2000). Nevertheless, the most straightforward
description of a constant phase shift in the frequency
domain is simply a transfer function with constant real
and imaginary parts, as given byMason (1950). However,
if formulated to be consistent with a real impulse
response, the corresponding impulse response is an
acausal 1/t function (valid for both positive and negative
time t), and this well-known transform pair resembles the
Hilbert transform (Bracewell 1965; Crandall 1963,
1970). Because physical objects respond in a causal
manner, the simple Mason formulation with constant
real and imaginary modulus is not realistic.

In Parker (2014b), we re-examined the fundamental
requirements for linear hysteresis and causality and
indicated that there is a diverse set of continuous, real,
causal analytic functions that provide linear hysteresis
behavior over a range of observable frequencies, but within
a set of constraints that permit only an approximation to the
classic formulation of constants. What remains to be seen
is how a physical model can approach the requirements of
hysteresis and, then, if these physical mechanisms actually
exist in soft tissues such as the liver. The first of these
requirements is established in this Technical Note.

THEORY

Necessary requirements for linear hysteresis
Under wave propagation, the requirements for linear

hysteresis are stringent because we require the attenua-
tion (the imaginary part of the wavenumber) to increase
linearly with frequency. This constrains the material
properties. For example, in a sinusoidal steady-state plane
shear wave propagation in an isotropic elastic material,
the general relationship is

TðuÞ5mSðuÞ (1)

where T(u) and S(u) are the shear stress and strain at fre-
quency u, respectively; m is the shear modulus; and the

shear wave speed is cs 5
ffiffi
m

r

q
, where r is the density

(Carstensen and Parker 2014). For many biomaterials

where Poisson’s ratio y approaches the incompressible
limit y / 0.5, the shear modulus can be approximated
by m¥ E/3, where E is the Young’s modulus, commonly
referred to as the ‘‘stiffness’’ (Parker et al. 2011). In a
lossy material, m or E can be described as a complex
quantity, for example, let m(u) 5 K(u) 1 jH(u); then
the complex wave number is
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Here, k is thewavenumber with real (b) and imaginary (a)
parts (Blackstock 2000). The attenuation coefficient a of
a propagating wave will therefore be a function of
frequency depending on K(u) and H(u). Expanding on
the real and imaginary parts of eqn (2), we have
(Carstensen and Parker 2014)
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the shear wave speed
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and the absorption coefficient
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Considering eqns (3)–(5), we see that if
K2(u)1 H2(u)5 constant, and if K(u)/H(u)5 constant,
then cs will be independent of frequency while a will be
linearly proportional to frequency. This behavior has been
traditionally associated with waves in a linear or ideal
hysteretic material since Mason (Mason 1950; Mason
and McSkimin 1947). However, this behavior can only
be observed in a passive medium if both K(u) and H(u)
are approximately constant over some extended
frequency range. We call this the ‘‘strict hysteresis’’
criterion (Parker 2014b) and have already noted that
achieving the strict criterion, jH(u)j 5 H0 and
jK(u)j 5 K0, over all frequencies is not possible with
real, causal functions. Furthermore, none of the simple
models such as the Kelvin, Maxwell or Zener model
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