
d Original Contribution

BREAST ULTRASOUND DESPECKLING USING ANISOTROPIC DIFFUSION
GUIDED BY TEXTURE DESCRIPTORS

WILFRIDO G�OMEZ FLORES,* WAGNER COELHO DE ALBUQUERQUE PEREIRA,y

and ANTONIO FERNANDO CATELLI INFANTOSIy

*Technology Information Laboratory, Center for Research and Advanced Studies of the National Polytechnic Institute, Ciudad
Victoria, Tamaulipas, Mexico; and yBiomedical Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de

Janeiro, Brazil

(Received 4 October 2013; revised 22 May 2014; in final form 4 June 2014)

Abstract—Breast ultrasound (BUS) is considered the most important adjunct method to mammography for
diagnosing cancer. However, this image modality suffers from an intrinsic artifact called speckle noise, which
degrades spatial and contrast resolution and obscures the screened anatomy. Hence, it is necessary to reduce
speckle artifacts before performing image analysis by means of computer-aided diagnosis systems, for example.
In addition, the trade-off between smoothing level and preservation of lesion contour details should be addressed
by speckle reduction schemes. In this scenario, we propose a BUS despeckling method based on anisotropic diffu-
sion guided by Log–Gabor filters (ADLG). Because we assume that different breast tissues have distinct textures,
in our approach we perform a multichannel decomposition of the BUS image using Log–Gabor filters. Next, the
conduction coefficient of anisotropic diffusion filtering is computed using texture responses instead of intensity
values as stated originally. The proposed algorithm is validated using both synthetic and real breast data sets,
with 900 and 50 images, respectively. The performance measures are compared with four existing speckle reduc-
tion schemes based on anisotropic diffusion: conventional anisotropic diffusion filtering (CADF), speckle-
reducing anisotropic diffusion (SRAD), texture-oriented anisotropic diffusion (TOAD), and interference-based
speckle filtering followed by anisotropic diffusion (ISFAD). The validity metrics are the Pratt’s figure of merit,
for synthetic images, and the mean radial distance (in pixels), for real sonographies. Figure of merit and mean
radial distance indices should tend toward ‘1’ and ‘0’, respectively, to indicate adequate edge preservation.
The results suggest that ADLG outperforms the four speckle removal filters compared with respect to simulated
and real BUS images. For each method—ADLG, CADF, SRAD, TOAD and ISFAD—the figure of merit median
values are 0.83, 0.40, 0.39, 0.51 and 0.59, and the mean radial distance median results are 4.19, 6.29, 6.39, 6.43 and
5.88. (E-mail: wgomez@tamps.cinvestav.mx) � 2014 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Currently, breast ultrasound (BUS) is the most important
adjunct to mammography for patients with palpable
masses and normal or inconclusive mammograms. Addi-
tionally, BUS has the ability to visualize hidden lesions in
women with dense breast tissue (Corsetti et al. 2011) and
is particularly useful in distinguishing cystic from solid
lesions, with an accuracy of nearly 100% (Jackson
1990). BUS is also used to differentiate between benign
and malignant tumors, which can be characterized by
their shapes, borders, internal echo features and posterior
acoustic behavior (Rahbar et al. 1999).

Ultrasound image quality is affected mainly by an
inherent imaging artifact called speckle, which results
from interference effects between returning echoes
produced by discontinuities of tissue below ultrasonic
beam resolution (unresolved scatterers) (Thijssen 2003).
Speckle can be interpreted as a locally correlated noise
(or random granular texture) that degrades the US image
by concealing fine structures and reducing the signal-to-
noise ratio (SNR). Further, speckle tends to reduce the
image contrast and to obscure and blur image details
(Michailovich and Tannenbaum 2006).

With respect to BUS images, the speckle could
make human interpretation difficult and, consequently,
influence inter-/intra-observer variations. Moreover,
computer-aided diagnosis (CAD) systems commonly
extract shape or contour features from segmented breast
lesions to classify them as benign or malignant (Cheng
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et al. 2010). However, the performance of the segmenta-
tion stage depends not only on its technical strategy,
but also on adequate image preprocessing schemes for
reducing the speckle.

Several filtering approaches aimed at reducing
speckle in US images while preserving edge details
have been proposed in the literature. Popular despeckling
techniques based on local statistics include median filter
(Horsch et al. 2001), truncated median filter (Evans and
Nixon 1993), adaptive weighted median filter (Loupas
et al. 1989) and the well-known Frost, Lee and Kuan
filters (Lopes et al. 1990). In addition, the use of directive
filtering, such as modified Gabor filters (Dantas and Costa
2007) or the ‘‘stick’’ method (Czerwinski et al. 1999), to
reduce ultrasonic speckle has been investigated. Morpho-
logic filters have also been used in BUS images to
preserve lesion contour anfractuosities (Alvarenga et al.
2009; Infantosi et al. 2008).

Furthermore, non-linear anisotropic diffusion
filtering (ADF), proposed by Perona and Malik (1990),
has attracted much attention because it is capable
of reducing noise in images without blurring the bound-
aries between homogeneous regions. Several variants of
ADF have been developed for US images, including
speckle-reducing anisotropic diffusion (SRAD) (Yu and
Acton 2002), median-guided anisotropic diffusion
(MADF) (Yang and Fox 2004), texture-oriented aniso-
tropic diffusion (TOAD) (Alem�an-Flores et al. 2007)
and interference-based speckle filtering followed by
anisotropic diffusion (ISFAD) (Cardoso et al. 2012).

The main advantage of ADF is the computation of
the gradient-based conduction coefficient to stop the
diffusion process through ‘‘strong’’ or significant edges.
Thus, the speckle is reduced efficiently within homoge-
neous regions while important edges details are preserved
(Yu and Acton 2002). This characteristic is desired when
filtering BUS images to avoid overblurring lesion con-
tours for further lesion segmentation and extraction of
useful shape and contour features by means of CAD sys-
tems. However, the reduction of speckle in BUS images is
a difficult task because of the large variance in lesions
shapes and low contrasts produced by shadows, echo fea-
tures and blurry or ill-defined boundaries. Therefore, if
the local contrast between breast lesion and adjacent tis-
sues is poor, the diffusion process will pass through the
edges.

To overcome this drawback, texture descriptors have
been employed to guide the diffusion process in the ADF
approach by using the responses of Gabor filters
(Alem�an-Flores et al. 2007). In this context, texture can
be defined as the spatial variation of pixel intensities at
scales smaller than the scales of interest (Petrou and
Garc�ıa-Sevilla 2006). The main idea is to perform a
multichannel decomposition of the BUS image to find

strong edges between tissues with different textures.
Therefore, the conduction coefficient is computed by us-
ing texture responses instead of pure intensity values.

Despite finding strong edges between distinct
textured regions could increase the filter performance,
in terms of boundary preservation, it is important to
consider a suitable value of the edge magnitude param-
eter in the conduction coefficient, denoted as k, to control
the diffusion extension of the ADF process. Such a
parameter is commonly fixed either heuristically by the
user or by computing a ‘‘noise estimator’’ (Perona and
Malik 1990). Hence, depending on its value the filter
should perform as an all-pass filter, on strong edges, or
as Gaussian smoothing, on homogeneous regions. Also,
the k value is considered global; that is, all pixels in the
image are treated equally. Thus, the k parameter should
be adequately chosen to cope with some characteristics
of the image such as noise power and local contrast. How-
ever, these characteristics could vary among BUS images,
depending on the ultrasound equipment, operator skills,
scanned tissues or inherent artifacts (Feldman et al.
2009).

The goal of the work described in this article was to
reduce the speckle within regions with similar textures
while avoiding overblurring of tissue-structure edges. In
this sense, we were interested in preserving breast lesion
shape for CAD purposes to enhance further tasks such as
lesion segmentation. We proposed to adapt the conduc-
tion coefficient parameter, k, for each pixel in the BUS
image by using 2-D Log–Gabor filters to depict textures
in specific directions. Also, we compared the perfor-
mance of the proposed technique with that of four
ADF-based techniques used in US images.

METHODS

Anisotropic diffusion filtering
The 4- or 8-nearest neighbor (N 4 or N 8) discretiza-

tion of the non-linear partial differential equation for the
ADF approach is expressed as (Perona and Malik 1990)

It11
i;j 5 Iti;j1t

X
d˛N d

½gðjVdIjÞVdI�ti;j (1)

where t is the iteration step; Iti;j is the noisy pixel at itera-
tion t; the pair i, j is the pixel location; 0, t# ¼ for the
numerical approximation to be stable; jxj denotes the
magnitude; N d indicates the set of d-directions for the
nearest-neighbor difference, N 4 5 {N, S, W, E} or
N 8 5 {N 4, NW, SW, NE, SE}, denoted by the symbolV:

VNI5 Ii;j212Ii;j; VNWI5 Ii21;j212Ii;j
VSI5 Ii;j112Ii;j; VSWI5 Ii21;j112Ii;j
VWI5 Ii21;j2Ii;j; VNEI5 Ii11;j212Ii;j
VEI5 Ii11;j2Ii;j; VSEI5 Ii11;j112Ii;j

(2)
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